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This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently mov-
ing conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and
its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended
failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of
α2 and αΩ type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics
results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive
force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence
is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily
independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no con-
vincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and
of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory
experiments with dynamos are made.
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1 Introduction

At the beginning of the last century mankind knew the mag-
netic field of the Earth, but nothing about magnetic fields at
other celestial bodies. In 1908 George Ellery Hale proposed
to interpret line splittings in the spectrum of the light com-
ing from sunspots, which were not understood at this time,
as a consequence of strong magnetic fields (of a few kilo-
gauss) within them. Eleven years later, in 1919, Sir Joseph
Larmor came up with the idea that magnetic fields at the
Sun could be generated by self-exciting dynamos just as in-
troduced in engineering for instance by Ernst Werner von
Siemens in 18671. Of course, Larmor’s proposal was not
readily accepted and there were many attempts to check it
or to rule it out. A dynamo in a homogeneous fluid is quite
different from its technical version built up with insulated
wires. More mathematically spoken, a dynamo working in
a singly-connected conducting region is different from that
in a multiply-connected region. In 1934 Thomas George
Cowling proved a theorem which we may now (after some
generalizations) formulate by saying that a dynamo can
never work with an axisymmetric magnetic field. Another
important theorem traces back to investigations by Walter

� Corresponding author: khraedler@arcor.de
1 The idea of the self-exciting dynamo has been stated several years

before by Anyos Jedlik, by Søren Hjorth and by Samuel Alfred Varley,
in 1867 also by Charles Wheatstone. Von Siemens is known for having
recognized the practical importance of the dynamo principle.

M. Elsasser in 1946 and by Edward C. Bullard and H. Gell-
man in 1954 and excludes a dynamo in a sphere due to mo-
tions without radial components. Quite a few modifications
of such theorems have been proven in the course of time
showing the impossibility of dynamos with some simple ge-
ometrical structures of the magnetic field or the fluid flow.

In 1947 Horace W. Babcock discovered a star with a
strong magnetic field (of 34 kilogauss), and in 1958 he
published a catalogue of magnetic stars. Later we learned
about a large number of various objects which exhibit mag-
netic fields, including galaxies with rather weak but very ex-
tended fields (of the order of 10−5 Gauss) or neutron stars
with extremely strong ones (up to the order of 1015 Gauss).

A rigorous existence proof for a homogeneous dynamo
has been delivered by A. Herzenberg in 1958. The velocity
distribution he assumed was, however, far away from from
that expected in the Earth’s interior, in the Sun or in stars.

Already before Herzenberg’s proof, 1955 and 1957, Eu-
gene N. Parker designed a model for the Sun in which “cy-
clonic convection” together with rotational shear, that is dif-
ferential rotation, produce a magnetic cycle. In 1964 Stanis-
laus I. Braginsky published his model of the “nearly sym-
metric dynamo” which reflects features of the Earth’s mag-
netic field.

In the early sixties Max Steenbeck in Jena pushed Fritz
Krause and myself to think about the question of how the
Sun or the Earth could generate their magnetic fields. Many
conceivable mechanisms were discussed and investigated in
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the course of time. At the end the mean-field electrodynam-
ics of electrically conducting turbulently moving fluids was
established. A central issue of this theory is the α effect, the
occurrence of an electromotive force with a part parallel (or
antiparallel) to the mean magnetic field as a consequence of
induction processes caused by irregular motions. The α ef-
fect allows dynamo action. The first paper on this topic has
been published by Steenbeck, Krause, and Rädler in 1966
(unfortunately only in German language). Since then mean-
field electrodynamics and, more general, mean-field magne-
tohydrodynamics have been elaborated in great detail and
dynamo models have been proposed for the Sun, planets,
several types of stars and for galaxies. In this lecture I would
like to explain a few results of this research field. (For com-
prehensive presentations see, e.g., Moffatt 1978; Krause &
Rädler 1980; or Brandenburg & Subramanian 2005.)

Before doing so, however, I would like to say: It is
a great honor for me to receive the Karl Schwarzschild
Medal. I am very grateful to the Board of the Astronomis-
che Gesellschaft for this distinction. It is also a great honor
to deliver this Schwarzschild lecture.

Let me start with a few remarks about Max Steen-
beck (1904–1981) and the place, Jena, where mean-field
electrodynamics was born. Max Steenbeck was no geo- or
astrophysicist. He was one of the great pioneers of plasma
physics, worked until the end of the Second World War in
the Siemens Company in Berlin, dealt there with heavy cur-
rent technology, for example rectifiers, constructed the first
working betatron, etc. At the end of the war he has been
interned in the Soviet Union. He spent there (involuntarily)
eleven years, dealing in particular with the separation of ura-
nium isotopes in the framework of the Soviet Atomic pro-
gram. After his return to the G.D.R. he dealt there with mag-
netic materials, with nuclear power stations, and in 1959 he
established the Institute for Magnetohydrodynamics in Jena
with the idea to deliver contributions to nuclear fusion re-
search, which looked at that time very promising. Some-
times, on his frequent rides between Jena and Berlin, or
occasionally on Saturdays and Sundays, he thought about
possibilities of processes in the Sun or in the Earth’s inte-
rior that might produce the observed magnetic fields, and
then attacked Fritz Krause and me with his ideas. Since the
Institute for Magnetohydrodynamics was not a place with
astrophysical or geophysical tradition there was, at least at
the beginning, no contact to leading scientists in these fields.

2 Mean-field electrodynamics

2.1 The basic idea

In what follows we deal with non-relativistic electromag-
netic processes in an electrically conducting moving fluid.
Adopting the magnetohydrodynamic approximation we as-
sume that the electromagnetic fields obey the pre-Maxwell
equations

∇×E = −∂tB , ∇×B = μJ , ∇ ·B = 0 , (1)

and Ohm’s law for moving matter in the form

J = σ(E + U ×B) . (2)

As usual, E denotes the electric field, B the magnetic field,
J the electric current density, and U the fluid velocity; fur-
ther μ means the magnetic permeability of free space and σ
the electric conductivity of the fluid. From Eqs. (1) and (2)
we may derive the induction equation

η∇
2B + ∇× (U ×B)− ∂tB = 0 , ∇ ·B = 0 , (3)

with η = 1/μσ being the magnetic diffusivity. For simplic-
ity we ignore here any electromotive force independent of
electromagnetic fields, which would act as a battery.

Until further notice we consider the fluid velocity U as
given. If the induction equation is solved and so the mag-
netic field B is known, we may calculate the electric field
E and the electric current density J without further integra-
tions.

Thinking of the situation in many astrophysical objects,
we assume further that the fluid velocity U and so also the
electromagnetic fields B, E and J show irregular fluctua-
tions in space and time. Considering these fluctuations we
simply speak of turbulence (without having a specific def-
inition of turbulence in mind). We then focus attention on
mean fields defined as averages of these fields and showing
simpler dependencies on space and time coordinates. Space
or time or statistical averages or combinations of them are
admitted. It is merely important that the Reynolds averaging
rules, already known from hydrodynamic turbulence theory,
are (exactly or approximately) satisfied. We denote averages
by overbars. Let F and G be quantities showing irregu-
lar behavior, that is fluctuations, and put F = F + f and
G = G + g. Then these rules read

F + G = F + G, (4)

F = F , or, what is equivalent, f = 0 , (5)

F G = F G + f g , (6)

∂F/∂x = ∂F/∂x , ∂F/∂t = ∂F/∂t . (7)

We stress that the average of the product of two fluctuating
quantities is not equal to the product of the corresponding
mean quantities, but there is an additional term determined
by the fluctuations.

Returning to electrodynamics we subject Eqs. (1) and
(2) to averaging. We find then their mean-field versions

∇×E = −∂tB , ∇×B = μJ , ∇ ·B = 0 , (8)

and

J = σ(E + U ×B + E) . (9)

When averaging Eq. (3) in the same way we obtain

η∇
2B + ∇× (U ×B + E)− ∂tB = 0 ,

∇ ·B = 0 .
(10)
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E is the mean electromotive force due to the fluctuations of
the fluid velocity and the magnetic field, u = U − U and
b = B −B, that is,

E = u× b . (11)

The form of the Eqs. (8)–(10) agrees widely with that of the
original, not averaged Eqs. (1)–(3). The only, but decisive
deviation consists in the occurrence of the new electromo-
tive force E .

The crucial point in the elaboration of mean-field elec-
trodynamics is the determination of that mean electromotive
force E . We first consider u as given. As for b we may de-
rive from Eqs. (3) and (10) that

η∇
2b + ∇× (U × b + ε)− ∂tb = −∇× (u×B) ,

ε = u× b− u× b , ∇ · b = 0 . (12)

Clearly ε is the fluctuating part of u×b. Equation (12) tells
us that b is a functional of u, U and B, which is linear (not
necessarily linear and homogeneous) in B. Consequently,
E depends also on these quantities and may be represented
as a sum

E = E
(0) + E

(B) (13)

of a part E
(0) independent of B and another part E

(B)

which is is linear and homogeneous in B.
Let us assume here that b decays to zero if B vanishes.

This implies also the absence of small-scale dynamos (see
Sect. 2.4). Under this assumption E

(0) decays to zero, too.
As a result, E agrees with E

(B) and it must allow a repre-
sentation in the form of the convolution

Ei(x, t) =

∫
∞

0

∫
∞

Kij(x, t; ξ, τ)Bj(x + ξ, t− τ) d3ξ dτ (14)

with some tensorial kernel Kij , which depends on u and
U . We know the explicit dependence of Kij on u and U

only for very special cases, but conclude from the turbulent
nature of the velocity fluctuations that Kij vanishes for suf-
ficiently large |ξ| and τ . As a consequence, E in a given
point in space and time depends only on the behavior of B

in a certain surroundings of this point, the extent of which
is determined by the correlation length and the correlation
time of u.

It is appropriate to split the kernel Kij in Eq. (14) into
two parts, one symmetric and the other one antisymmetric
in ξ, and to express the last one by a derivative of a ten-
sor symmetric in ξ. Doing so and subjecting then Eq. (14)
to an integration by parts we arrive easily at the equivalent
representation

Ei(x, t) =

∫
∞

0

∫
∞

(
Aij(x, t; ξ, τ)Bj(x + ξ, t− τ)

+ Bijk(x, t; ξ, τ)
∂Bj(x + ξ, t− τ)

∂xk

)
d3ξdτ

(15)

with two tensorsAij and Bijk which are both symmetric in
ξ.

Assume for a moment that B varies only weakly in
space and time, that is, there are distinct gaps in the spec-
tra of the length and time scales of the total magnetic field,
B + b, separating large and small scales. We speak then of
ideal scale separation. In this case relation (15) turns into a
simpler one,

Ei = aijBj + bijk

∂Bj

∂xk

, (16)

with

aij =

∫
∞

0

∫
∞

Aij(x, t; ξ, τ) d3ξ dτ (17)

and an analogous connection between bijk and Bijk .
While relation (15) connects E at a given point in space

and time with B in an arbitrary spatial surroundings of this
point and at this time and arbitrary past times, relation (16)
describes a local and instantaneous connection of E with
B and its first spatial derivatives. The latter relation, which
has to be understood as application of the former one to
idealized cases, explains a large number of phenomena in
turbulent fluids, in particular some types of dynamos. It is,
however, unable to capture, e.g., memory effects, that is,
the dependence of the evolution of a mean field not only on
its current values but also on its history (see Sect. 2.6). In
what follows we will, as long as it is appropriate, refer to
Eq. (16) but switch to Eq. (15) where necessary. We want to
stress that many statements on pretended failures of mean-
field electrodynamics or on allegedly narrow limits of its
applicability result from ignoring Eq. (15) and considering
instead Eq. (16) as the most general relation for the mean
electromotive force E .

Let us finally mention the technical issue that convo-
lutions like (15) turn under a proper Fourier transformation
(or, concerning the time, also a Laplace transformation) into
simpler algebraic relations. Ignore for simplicity any depen-
dence ofAij and Bijl on x and t. With a transformation

F (x, t) = (2π)−4

∫ ∫
F̂ (k, ω)

exp
(
i(k · x− ωt)

)
d3k dω

(18)

relation (15) turns then into

Êi(k, ω) = Âij(k, ω) B̂j(k, ω)

+ i B̂ijk(k, ω) B̂j(k, ω)kk .
(19)

2.2 A simple example

We consider first the case in which no mean flow exists,
U = 0, and the velocity fluctuations u correspond to a ho-
mogeneous isotropic turbulence. As for the mean magnetic
field B we assume ideal scale separation in the sense ex-
plained above so that Eq. (16) applies.

We define homogeneity of the turbulence by the invari-
ance of all averaged quantities depending on u under ar-
bitrary translations of the u field, and isotropy by the in-
variance of all such quantities under arbitrary rotations of
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this field about arbitrary axes. We may also fix the u field
and subject the coordinate system in which we describe it
to translations or rotations. Then homogeneity and isotropy
occur as invariance of all averaged quantities under arbitrary
translations and arbitrary rotations of the coordinate system.
In particular the tensors aij and bijk that occur in Eq. (16)
have to show these properties, that is, their components have
to be independent of space coordinates and independent of
rotations of the coordinate system. This qualifies them as
space-independent isotropic tensors, that is, they differ only
by simple factors, say α and β, from the Kronecker tensor
δij and the Levi-Civita tensor εijk , that is, aij = α δij and
bijk = βεijk . In this way we arrive at

E = α B − β ∇×B , (20)

and the mean-field version (9) of Ohm’s law takes the form

J = σm(E + αB) (21)

with the mean-field conductivity σm given by

σm = σ/(1 + μσβ) . (22)

While α is a pseudoscalar, β is a scalar.
Homogeneity and isotropy of turbulence do not include

reflectional symmetry. We define it by the invariance of all
averaged quantities depending on u under reflexion of the u

field at a point. In the case of homogeneity and isotropy this
is equivalent to reflexions at any plane. A reflexion turns a
right-handed structure in the flow field in a left-handed one
and vice versa. Reflectional symmetry in the above sense
implies therefore an equipartition of right-handed and left-
handed structures in a fluid flow, that is, the absence of any
preferred handedness. A simple consequence is, e.g., that
the mean kinetic helicity u · (∇× u) vanishes. In the case
of homogeneous isotropic reflectionally symmetric turbu-
lence we may easily show that the pseudoscalar α in Eqs.
(20) and (21) has to be zero. There is, however, no restric-
tion to the scalar β.

As long as there are no deviations of the underlying
homogeneous isotropic turbulence from reflectional sym-
metry the mean-field version of Ohm’s law reads simply
J = σmE with σm as given by eq. (22). The insight, that
for mean fields a conductivity different from that relevant
for the original fields applies, can already be found in pa-
pers by Sweet (1950) and Csada (1951). As we will see
later (Sect. 2.5) the ratio σm/σ can be much bigger than
unity. In the solar convection zone, e.g., it may take values
of the order of 104, what explains in particular the observed
life times of sunspots.

Turbulence in rotating bodies, on which we want to fo-
cus our attention later, is subject to the Coriolis force. It de-
viates therefore not only from isotropy but also from reflec-
tional symmetry.2 Preparing investigations of this complex
situation, we consider here first the more or less academic

2 This corresponds to the fact that the Coriolis force is determined, e.g.,
by a right-hand rule.

case of homogeneous isotropic but not reflectionally sym-
metric turbulence, in which Eqs. (20) and (21) with α �= 0
apply. The occurrence of the electromotive force αB is
called “α effect”. It has been first considered by Steenbeck,
Krause & Rädler (1966) in a slightly different context (see
Sect. 2.3).

The α effect allows growing mean magnetic fields, that
is, dynamo action. In order to show this we consider the
mean-field induction equation (10) with U = 0 and E spec-
ified according to Eq. (20), that is,

ηm∇
2B + α∇ ×B − ∂tB = 0 , ∇ ·B = 0 , (23)

where ηm is the magnetic mean-field diffusivity,

ηm = η + β . (24)

Simple particular solutions B of Eq. (23) read

B = B0(cos kz,± sinkz, 0) exp(λt) ,

λ = −(η + β)k2 ± αk ,
(25)

with a wave number k, which we consider as positive, and a
growth rate λ. Growing solutions, i.e., such with λ > 0, are
possible as soon as |α| > (η + β) k. We will see later (Sect.
2.5) that this condition can well be satisfied.

2.3 A more realistic example

In a next, somewhat more realistic case, we consider turbu-
lence on a rotating body. We assume that for a co-rotating
observer no mean flow exists, U = 0, but admit slight devi-
ations of the turbulence, u, from homogeneity and isotropy.
We further assume that the inhomogeneity can be described
by a vector g, e.g., the intensity gradient ∇u2 of the turbu-
lence. The anisotropy depends, of course, apart from g also
on the angular velocity Ω which defines the Coriolis force.
Again, we restrict ourselves to sufficiently small variations
of the mean magnetic field B in space and time so that Eq.
(16) applies. Considering the deviations of the turbulence
from homogeneity and isotropy as sufficiently small, we as-
sume that aij and bijk are linear in both g and Ω. Studying
then the possible tensorial structures of aij and bijk we find

E = α1(g ·Ω)B + α2g(Ω ·B) + α3Ω(g ·B) + γg ×B

− β∇×B − δΩ× (∇×B)− δ∗∇(Ω ·B) (26)

with scalar coefficients α1, α2, . . . δ∗ independent of g and
Ω.

The first line of Eq. (26) reproduces the momentous re-
sult by Steenbeck, Krause & Rädler (1966). Due to the Cori-
olis force there is now (at least locally) a preference of either
right-handed or left-handed helical patterns in the turbulent
flow. As a consequence the three contributions to E with
the coefficients α1, α2 and α3 occur in Eq. (26). The term
α1(g·Ω)B corresponds to αB in relation (20), that is, in the
case of homogeneous isotropic turbulence lacking reflexion
symmetry. However, the α1 term is now accompanied by
two others, the α2 and α3 terms. We speak here again of an
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α effect, more precisely, if all three terms are considered,
of an anisotropic α effect. On a spherical body, on which g

points in radial direction, α1(g · Ω) changes its sign when
moving from the northern hemisphere to the southern one.
The α effect as considered here is crucial for special types
of mean-field dynamo mechanisms (see Sect. 2.4).

The γ term in Eq. (26) describes the transport of mean
magnetic flux by inhomogeneous turbulence. This effect has
been first, for a two-dimensional turbulence, considered by
Zeldovich (1956), later in a more general context by Rädler
(1968a,b). It has been discussed as “pumping of mean mag-
netic flux” or (since the mean magnetic flux is expelled from
regions of high turbulence intensity) as “turbulent diamag-
netism”.

The β term corresponds to that which occurred already
in the case of homogeneous isotropic turbulence, that is in
Eq. (20), and gives rise to introduce the mean-field conduc-
tivity in the mean-field version of Ohm’s law or the mean-
field diffusivity in the mean-field induction equation.

The effect described by the δ term in Eq. (26) has
been first considered by Rädler (1969a,b). It is often called
“Ω×J effect”, in what follows also simply “δ effect”. Com-
bined with mean shear it is capable of dynamo action (see
Sect. 2.4). Other than the α effect, the δ effect requires spa-
tial variations of the mean magnetic field; it does not oc-
cur with a homogeneous field. Apart from this it is in a
sense simpler than the α effect. It needs no gradient of the
turbulence intensity but occurs already with homogeneous
turbulence. The sum of the β and δ terms can also be de-
scribed by an anisotropic mean-field conductivity with a
non-symmetric conductivity tensor. The δ∗ term is of minor
importance. It does not influence the mean-field induction
equation as long as δ∗ is spatially constant.

2.4 Mean-field dynamo mechanisms

When discussing dynamo mechanisms due to turbulent mo-
tions we focus attention on mean-field dynamos. They are
characterized by the ability to generate magnetic fields with
length scales much larger than the typical length scales of
the turbulent motions. Therefore we call them also “large-
scale dynamos”. In this context we should have in mind the
finding by Kazantsev (1968) according to which a homoge-
nous isotropic turbulence, which needs not to deviate from
reflexion symmetry, may under certain conditions maintain
irregular magnetic fields with length scales smaller than or
equal to those of the turbulent motion, which therefore do
not contribute to a mean magnetic field. We speak then of
a “small-scale dynamo”. The influence of large-scale on
small-scale dynamos and vice versa is an interesting sub-
ject (see, e.g., Brandenburg et al. 2012), which we however
do not want to discuss here.

Let us consider dynamos due to turbulence on an ax-
isymmetric rotating fluid body. We restrict attention first to
mean magnetic fields that are symmetric about the axis of
rotation. Each such field can be split into a poloidal part that

lies completely in meridional planes, and a toroidal part per-
pendicular to them. Within this frame, dynamos can always
be understood as an interplay between the poloidal and the
toroidal part of the mean magnetic field. We admit here a
mean motion in the form of differential rotation, that is, a
dependence of the corresponding angular velocity Ω on ra-
dius or latitude. In addition to induction effects of turbu-
lent motions described, e.g., by α or δ effects, we have then
also the effect of rotational shear, which we call “Ω effect”.
While α and δ effect generate poloidal magnetic fields from
toroidal ones and vice versa, the Ω effect generates only a
toroidal field from a poloidal one.

The simplest mean-field dynamo mechanism is that of
α2 type, in which both the generation of the poloidal field
from the toroidal one as well as that of the toroidal field
from the poloidal one is due the α effect. The first spherical
models of this type were proposed by Steenbeck & Krause
(1969b), and were on the basis of numerical simulations dis-
cussed in view of the Earth and the planets. If we admit in
addition the Ω effect and assume that it dominates the gen-
eration of the toroidal field, we arrive at dynamos of the
αΩ type. Models of this type have been investigated also by
Steenbeck & Krause (1969a) and applied to explain essen-
tial features of the magnetic solar cycle. The case in which
both the α and the Ω effect contribute markedly to the gen-
eration of the toroidal field is often labeled as mechanism of
α2Ω type. In the course of time, a large number of dynamo
models of the mentioned types have been investigated (see,
e.g., Rädler 1986).

Mean-field dynamos require not necessarily the α ef-
fect. It is easy to see that there is no dynamo due to the δ
effect alone. However, the combination of the δ and Ω ef-
fects is, as demonstrated by Rädler (1969b, 1976), capable
of dynamo action. Meanwhile there are several results for
dynamo models of that type (see, e.g, Rädler 1974, 1986).
Also the combination of another effect which can be de-
scribed as an anisotropy of the mean-field conductivity with
the Ω effect can lead to a dynamo (Rädler 1986).

So far we focussed attention on dynamos with axisym-
metric mean fields, which allow a simple description. The
mechanisms mentioned here work, however, also with non-
axisymmetric mean fields, and there are quite a few cases
in which such fields are easier to excite than axisymmetric
ones (see, e.g., Rädler 1986).

Rogachevskii & Kleorin (2004) claimed that the induc-
tion effects that occur in a turbulent fluid under the influence
of a global shear, which are similar to those in the δΩ mech-
anism, are also capable of dynamo action, and they spoke
of a “shear-current dynamo”. They calculated the relevant
mean-field coefficients however in a defeasible approxima-
tion. Several investigations on this ”shear-current dynamo”
have been carried out, but no reliable proof for its existence
has been given so far.

It has been shown for a wide range of assumptions that
the magnetic mean-field diffusivity ηm = η + β is positive
so that a growth of a mean magnetic field due to nega-
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tive mean diffusivity can be excluded. There is however a
very recent result which might provoke scruples in this re-
spect. Some properties of mean-field dynamos are reflected
by mean-field models derived from the dynamos investi-
gated by Roberts (1972), working not with turbulence but
with regular three-dimensional flows periodic in, say, x and
y and independent of z. It has been shown by Devlen et al.
(2013) that in one of these mean-field models growing mean
magnetic fields are generated with no other mean-field in-
duction effect than a negative mean-field diffusivity. It re-
mained open whether this result can be extended to mean-
field dynamos working with real turbulence.

2.5 Calculation of mean-field coefficients

2.5.1 Second-order correlation approximation

So far we have have considered connections of the mean
electromotive force E with the mean magnetic field B and
its spatial derivatives that are defined by coefficients like
α, β, α1 or δ, but nothing has been said about their actual
values or their dependence on the magnitude or other prop-
erties of the fluctuating motions. In the early days of mean-
field electrodynamics many calculations of E were carried
out on the basis of Eq. (12) for the magnetic fluctuations b

but with the ε term canceled. This is an approximation that
can be justified for sufficiently small velocity fluctuations u

only, often called “second-order correlation approximation”
(SOCA) or “first-order smoothing approximation” (FOSA)
or “quasilinear approximation”.

Consider as an example again the case in which the
mean velocity U vanishes and the fluctuating velocity u

corresponds to a homogeneous isotropic turbulence. Re-
strict attention further to small variations of the mean mag-
netic field B in space and time, that is, ideal scale sep-
aration, and to the in applications most important high-
conductivity limit, defined by ητc/λ2

c � 1, where τc and
λc are correlation time and correlation length of the turbu-
lent motions. Within the frame of SOCA we find then

α = − 1
3

∫
∞

0

u(t) · (∇× u(t− τ)) dτ ,

β = 1
3

∫
∞

0

u(t) · u(t− τ) dτ .

(27)

We may write this also in the form

α = − 1
3u · (∇× u) τ (α) , β = 1

3u2 τ (β) , (28)

with τ (α) and τ (β) defined by equating the corresponding
expressions in Eqs. (27) and (28). Under reasonable as-
sumptions both τ (α) and τ (β) are approximately equal to τc.
These results are in many respects instructive. In the high-
conductivity limit considered here, however, the application
of SOCA can only readily be justified if the Strouhal num-
ber St = ucτc/λc, with uc being a characteristic value of u,
is small compared with unity. In realistic cases of turbulence
it is close to unity.

It is well possible to proceed from the second-order
approximation to a third-order one with ε expressed by
second-order results, then to a fourth-order one with ε ex-
pressed by third-order results etc., and it has been proven
that this procedure converges (Krause 1968). Analytic cal-
culations of that kind are however very tedious and, apart
from a few fourth-order results, no results of practical inter-
est have been gained in this way.

2.5.2 Test-field method

Several other techniques for obtaining results for mean-field
coefficients have been proposed, using assumptions which
look to a certain extent plausible but cannot be justified in
a clean way (for a critical review see, e.g., Rädler & Rhein-
hardt 2007). In recent years, with growing possibilities of
numerical calculations, the “test-field method”, established
immediately on the basic equations, brought much progress
in the reliable determination of mean-field coefficients.

The method was developed by Schrinner et al. (2005,
2007) in the context of this task: Consider a simple geody-
namo model, with the magnetic field maintained by convec-
tion. Define mean fields by averaging over the azimuthal
coordinate; they are then axisymmetric. Extract the mean-
field coefficients from the numerical results for this model.
Construct a mean-field model with these coefficients. Com-
pare then the mean fields obtained from the original model
by direct numerical simulations with those obtained from
the mean-field model. In the ideal case they should agree
with each other.

Let us sketch the idea of the test-field method for the
case of the simple connection of the mean electromotive
force E with B and its first spatial derivatives as given by

Eq. (16). We choose a set of test fields B
T

and replace B

in (12) consecutively by each of its elements, calculate the

corresponding bT and finally E
T = u× bT. These E

T have
to obey

aijB
T

j + bijk∂B
T

j /∂xk = ET
i . (29)

With a sufficient number of independent B
T

we obtain a
system of equations which allows us the determination of
the aij and bijk from the ET

i calculated for the chosen set of

B
T

. It turned out that there is a high degree of freedom in
the choice of the test fields. They need not to be solenoidal
and have not to satisfy specific boundary conditions.

Let us return once more to the coefficients α and β for
homogeneous isotropic turbulence. Referring to numerical
simulations of hydrodynamic turbulence in a weakly com-
pressible fluid, Sur et al. (2008) used the test-field method
for the determination of these coefficients. The turbulence
was specified to have an energy input at a wavenumber
kf , and to be maximally helical, that is, (∇× u)2/u2 =
k2
f . Calculations with different values of the hydrody-

namic Reynolds number Re = urms/νkf , where ν means
the kinematic viscosity, were carried out. In Figs.1 and 2
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�

�

Fig. 1 Normalized mean-field coefficients α/α0 and β/β0 as
functions of Rm, obtained in test-field calculations by Sur et al.
(2009) based on turbulence simulations with Re = 2.2.

some results for α/α0 and β/β0 with α0 = − 1
3urms and

β0 = 1
3urms/kf are shown in dependence on the magnetic

Reynolds number Rm = urms/ηkf . In the turbulence con-
sidered here the Strouhal number St turned out to be of the
order of unity. So the reported results confirm that Eqs. (27)
and (28), which were derived for St� 1 only, apply also
with realistic values of St.

The test-field method for the determination of the mean-
field coefficients brought much progress in mean-field elec-
trodynamics and beyond. It has been extended to a very
broad range of assumptions, is in particular not limited to
cases with scale separation (see, e.g., Brandenburg et al.
2008; Rheinhardt & Brandenburg 2010, 2012).

2.6 Imperfect scale separation

2.6.1 Apparent discrepancies

In the examples considered so far we have reduced the gen-
eral representations (14) or (15) of the mean electromotive
force E as a convolution depending on the mean magnetic
field B in all space and at the current time and all past times,
to the simple local and instantaneous connection (16) of E

with B and its first spatial derivatives. On this level the the-
ory may deliver incomplete or even wrong statements.

One example for that is the not ideal agreement of the
mean-field geodynamo models derived immediately from
the basic equations with those constructed with mean-field
coefficients determined by the simple version of the test-
field method, which considers only local and instantaneous
connections of E with B and its first derivatives (Sect.
2.5.2).

Fig. 2 Same as Fig. 1 but simulations with Re = 10Rm.

2.6.2 Memory effect

Another interesting example concerns the growth of a mean
magnetic field in a turbulence showing α effect. As Hub-
bard & Brandenburg (2009) pointed out, the growth rates
obtained in direct numerical simulations clearly differ from
those derived from a dispersion relation with mean-field co-
efficients gained in a static approximation, that is, assum-
ing an instantaneous connection of E and B as in Eq. (16).
The difference disappears if a proper connection of E at a
given time with B at former times, that is, some memory of
the turbulent system, is taken into account. We know mean-
while many examples in which such memory effects play
an important role and can even be crucial for the existence
of dynamos (Rheinhardt et al. 2014).

For an illustration of the memory effect, Hubbard and
Brandenburg (2009) considered a Roberts flow instead of a
real turbulence. They assumed u=−e ×∇ψ + kfψ e and
ψ = (u0/k0) cos k0x cos k0y, where e means the unit vec-
tor in z direction and u0, kf and k0 are constants, and they
restricted attention on the case of a maximal modulus of
the relative helicity u · (∇× u)/u2kf , which occurs with
kf =

√
2k0. They further defined mean fields by averaging

over all x and y. Figure 3 shows the normalized growth rates
λ/λ0, with λ0 = urmskf , as functions of Rm, obtained (i)
in direct numerical simulations and (ii) from the dispersion
relation with mean-field coefficients determined in a static
approximation. Note the substantial deviations of the two
results for large Rm.
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466 K.-H. Rädler: Mean-field dynamos

Fig. 3 Normalized growth rates λ/λ0 of a mean magnetic field
in a Roberts flow as functions of Rm, (i) obtained in direct nu-
merical simulations and (ii) calculated from a dispersion relation
with mean-field coefficients determined in a static approximation,
according to Hubbard & Brandenburg (2009).

3 Mean-field magnetohydrodynamics

3.1 Momentum balance and consequences

So far the fluid velocity has been considered as prescribed.
We now relax this assumption and use in addition to the
electromagnetic equations (1) and (2), or the induction
equation (3), also the momentum balance. For the sake of
simplicity we restrict ourselves to an incompressible fluid.
Admitting a rotating frame of reference we have then

�(∂tU + (U ·∇)U) = −∇P + �ν∇
2U − 2�Ω×U

+ (1/μ)(∇×B)×B + F , ∇ ·U = 0 . (30)

Here � means the mass density, ν the kinematic viscosity
of the fluid, and P the hydrodynamic pressure. The angu-
lar velocity Ω defines the rotation of the frame and so the
Coriolis force, and F stands for any external force. The in-
ertial term in (30) is balanced by the pressure gradient, the
viscous force, the Coriolis force, the Lorentz force and pos-
sibly some external force.

Let us focus attention again on turbulent situations. Tak-
ing then the average not only of the induction equation (3)
but also of the momentum balance (30), we find in addi-
tion to the mean-field induction equation (10) with the mean
electromotive force E given by Eq. (11) the mean-field ver-
sion of the momentum balance,

�(∂tU + (U ·∇)U) = −∇P + �ν∇
2U − 2�Ω×U

+ (1/μ)(∇×B)×B + F + F , ∇ ·U = 0 , (31)

with a mean ponderomotive force F ,

F = −�(u ·∇)u + (1/μ)(∇× b)× b . (32)

If we ignore the magnetic field we return to pure hydro-
dynamics. The mean ponderomotive force F covers then,
for example, the contribution of the turbulence to the mean-
field viscosity, often discussed as eddy viscosity, further the
Λ effect, which, on a rotating body, may drive differential
rotation (Rüdiger 1989), or the anisotropic kinetic α effect

(AKA effect, Frisch et al. 1987). We do not want to discuss
these subjects here but focus attention on cases with mag-
netic field.

Generalizing the considerations on the mean electromo-
tive force E explained above, we see that both the electro-
motive force E and the ponderomotive force F may be con-
sidered as functionals of fluctuations u(0) and b(0), for ex-
ample relating to the case of vanishing mean motion and
mean magnetic field, of the mean velocity U , the mean
magnetic field B and their first spatial derivatives and also
of the angular velocity Ω that determines the Coriolis force.
These functionals are not necessarily linear in U , B or Ω.

Focussing attention on the mean electromotive force E

we write once again E = E
(0) + E

(B), with a part E
(0) in-

dependent of the mean magnetic field B. In our short pre-
sentation of mean-field electrodynamics we argued, consid-
ering purely hydrodynamic background turbulence, that the
part E

(0) will always decay to zero. Now we may no longer
exclude magnetohydrodynamic turbulence, and then this is
no longer necessarily the case. A non-zero part E

(0) of E

corresponds to a battery. If such a part exists, the mean-field
induction equation is no longer homogeneous in the mean
magnetic field B and has always non-decaying solutions. In
the absence of conditions that allow a mean-field dynamo
the magnitude of the corresponding mean magnetic fields is
determined by E

(0). If a dynamo is possible, they may act
as seed fields.

3.2 The Yoshizawa effect

An interesting example of a contribution to the mean elec-
tromotive force independent of the mean magnetic field,
E

(0), has been given by Yoshizawa (1990). Let us consider
magnetohydrodynamic turbulence in the presence of a mean
flow or on a rotating body, that is, under the influence of the
Coriolis force. Assuming originally homogeneous isotropic
turbulence and ideal scale separation in space and time, we
may expect that

E
(0) = cUU + cW ∇×U + cΩΩ (33)

with three coefficients cU , cW and cΩ. If the turbulence
shows Galilean invariance, cU has to be zero. The two coef-
ficients cW and cΩ must be pseudo scalars, and it turns out
that they are closely connected with the cross-helicity u · b.
The Yoshizawa effect, that is, an electromotive force like
(33) with nonzero cW or cΩ, is capable of building up and
maintaining a mean magnetic field. Its strength depends on
cW and cΩ. As explained above, it may act as a seed field if
there are conditions which allow a further growth of mean
magnetic fields. Of course, the production of cross-helicity
in general depends also on the mean magnetic field, and in
that sense the mean electromotive force under considera-
tion, too, may depend on this mean magnetic field.
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3.3 The α effect and α quenching

Let us return to the situation as considered in Sect. 2.2, that
is, no mean motion, no Coriolis force and only small vari-
ations of B in space and time. Instead of purely hydrody-
namic turbulence we assume however now homogeneous
isotropic magnetohydrodynamic turbulence, for which b,
like u, remains non-zero if B → 0. Then E has to sat-
isfy again Eq. (20), that is E = α B − β (∇×B). Solving
the equation governing b under SOCA and that for u under
an analogous approximation, further restricting ourselves to
the high-conductivity limit, ητc/λ2

c � 1, and the analogous
low-viscosity limit, ντc/λ2

c � 1, we find

α = αK + αM ,

αK = − 1
3u(0) · (∇ × u(0)) τ (αK) , (34)

αM = 1
3μ�

b(0) · (∇× b(0)) τ (αM) ,

and

β = βK = 1
3u(0)2 τ (β) . (35)

(see, e.g., Rädler & Rheinhardt 2007). Here u(0) and b(0)

stand for u and b in the limit B → 0, and τ (αK), τ (αM) and
τ (β) are quantities approximately equal to the correlation
time τc. Within this framework the α effect has in addition
to the kinetic part, which is connected with the mean ki-
netic helicity u · (∇ × u), a magnetic part connected with
the mean current helicity b · (∇× b) = μj · b. Such a mag-
netic part has been first considered by Pouquet et al. in 1976.
Remarkably the coefficient β, which determines the mean-
field diffusivity, has no such magnetic contribution. If we
put b

(0) = 0 we return to our old result for purely hydrody-
namic turbulence.

Let us now admit an arbitrarily strong mean magnetic
field. It causes an anisotropy of the turbulence such that the
tensor aij in (16) has the structure α1δij + α2eiej , where
α1 and α2 may depend on |B|, and e stands for the unit
vector in the direction of B. Considering then (16) but ig-
noring, for simplicity, the terms with derivatives of B, we
find again E = α B with α = α1 + α2 being a function of
|B|. In general we expect a reduction of the modulus of α
with growing |B|. In this case we speak of “α quenching”.
It limits the growth of the mean magnetic field and defines
a saturation field strength.

The determination of the dependence of α on |B| is a
complex task. A simple ansatz that has been frequently dis-
cussed in the past reads

α =
α0

1 + c B
2
/B2

eq

, (36)

where α0 is the value of α in the limit B → 0, further c
a dimensionless positive constant and Beq the equipartition
field strength defined such that the energies stored in the
fluctuating velocity field and in the mean magnetic field are
equal to each other, that is, B2

eq = μ� u2.
In 1992, Vainshtein and Cattaneo suggested on the basis

of analytical considerations and numerical calculations with

an imposed magnetic field a relation like (36) with c ≈ Rm,
where Rm means again the magnetic Reynolds number. In
the solar convection zone, for example, Rm takes values of
106 or even 109, and B/Beq values of the order of unity.
Then α would be very close to zero and we could not ex-
pect any dynamo. Therefore this kind of quenching has been
called “catastrophic quenching”.

This finding has initiated many discussions and inves-
tigations. Considerable progress has been made by investi-
gating the simplest possible dynamo systems with α effect
in the nonlinear regime. A fully satisfactory theory of this
subject is, however, still missing.

One important issue in the recent investigations on α
quenching are the hypotheses that α is always a sum of a
kinetic part αK and a magnetic part αM and that the latter
is determined by the part of the mean current helicity due
to the electric current and magnetic field fluctuations, j · b.
The other important issue is the role of the magnetic helic-
ity in a dynamo. We recall here that the magnetic helicity,
say H , is defined as a volume integral over the magnetic he-
licity density h = A ·B, where A is a vector potential of
the magnetic field B, that is ∇ × A = B. If the electro-
magnetic fields satisfy specific conditions at the surface of
this volume, in particular the magnetic field does not inter-
sect this surface, H is independent of the special choice of
the vector potential A, that is, under gauge transformations
of A. Then the basic equations imply further that, in the
limit of infinite conductivity, H is a conserved quantity, that
is, does not change in time. Within the mean-field concept
the magnetic helicity density h is the sum of two parts, one
originating from the mean magnetic field B and the other
from the fluctuating part of the magnetic field, b. The mean
part of the latter, a · b with ∇×a = b, is closely related to
the magnetic contribution αM to α, which is, as explained
above, determined by the part j · b = (1/μ)b · (∇× b) of
the mean current helicity. If, for example, in the limit of in-
finite conductivity H is initially equal to zero and the mean
magnetic field grows, the modulus of αM must grow, too.

With the hypothesis α = αK + αM, further the evolu-
tion equation of the mean magnetic helicity density due to
fluctuations, and a few plausible assumptions an evolution
equation for αM,

∂tαM = −2ηtk
2
f

(
E ·B
B2

eq

+
αM

Rm

)
−∇ · F , (37)

has been derived (see, e.g., Hubbard & Brandenburg 2011).
As usual in this context, we write here ηt instead of β, and
kf denotes again the wavenumber of the energy-carrying
scale in the turbulence. E should be specified to be equal
to (αK + αM)B − ηt∇×B. As above, Beq is the equipar-
tition field strength, and F means a mean magnetic helicity
flux. In simple models with periodic boundary conditions
the term ∇ · F does not change the total mean magnetic
helicity inside a dynamo volume. In general, however, the
mean magnetic helicity flux plays a crucial role, and expres-
sions for F have been elaborated which depend, for exam-
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ple, on differential rotation. Models incorporating such re-
sults reflect indeed many properties of dynamos in the non-
linear regime including saturation field strengths (see, e.g.,
Brandenburg & Subramanian 2005; Hubbard & Branden-
burg 2011,2012; Del Sordo et al. 2013).

4 Laboratory experiments

The development of dynamo theory was accompanied and
supported by several laboratory experiments. As early as in
1967, one year after the first paper about this subject, the
α effect has been demonstrated in a liquid sodium flow in
the Institute of Physics in Riga (Steenbeck et al. 1967). The
measurements were carried out at the so-called “α box”, in
which a proper flow geometry has been organized by baf-
fles.

Already at this time there were many discussions on the
realization of a dynamo in a conducting fluid. It was clear
from the very beginning that such an experiment requires
a large fluid volume and high flow rates. Only in the last
days of the last century, in December 1999, after expen-
sive preparations, two dynamos ran successfully with liq-
uid sodium flows, one in Riga (Gailitis et al. 2000) and one
in Karlsruhe (Müller & Stieglitz 2000, 2002). The first one
(Riga) is clearly different from a mean-field dynamo, but the
second one (Karlsruhe) can be well understood as a mean-
field dynamo of α2 type (see Rädler et al. 2002).

I do not want to go into the details of these experiments
but add a more general remark on the sometimes underesti-
mated practical value of basic research. We have learned in
geophysically or astrophysically motivated studies that the
self-excitation of magnetic fields in moving electrically con-
ducting fluids is possible as soon as the magnetic Reynolds
number Rm = UL/η, with U and L being typical values of
fluid velocity and linear dimensions of the considered de-
vice, exceeds a critical value, which depends on the flow
geometry and lies in all investigated cases above unity. For
a long time situations of that kind did not appear in labo-
ratories or in industrial devices. In the sixties and seventies
of the last century, however, big fast breeder reactors were
built with huge circuits of liquid sodium, which transport
the heat produced in the active zone to the places where
it is transformed into electric power. Such devices imply
indeed the possibility of self-excitation of magnetic fields,
what constitutes a big danger. These fields could quickly
grow, heavily hamper the sodium flow and so seriously dis-
turb the whole reactor regime or even cause a catastrophe.
At first the reactor engineers were not aware of that. It was
the people thinking about cosmic dynamos who pointed out
this danger. Max Steenbeck, as a Foreign Member of the
Soviet Academy, presented there in 1971 a corresponding
memorandum and initiated so investigations in this field and
measures to avoid this danger. Some years later, indepen-
dent of that, two papers of British scientists about this topic
have appeared (Bevir 1973; Pierson 1975). This develop-
ment fostered the willingness of authorities to support the-

oretical and experimental research on dynamos and related
topics.
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Rädler, K.-H. 1969a, Monatsber. Dt. Akad. Wiss, 11, 194
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