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Evolution of primordial magnetic fields
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Here we briefly summarise the main phases which determine the dynamical evolution of primordial magnetic fields in the
early universe. On the one hand, strong fields undergo damping due to excitations of plasma fluctuations, and, on the other
hand, weak magnetic fields will be strongly amplified by the small-scale dynamo in a turbulent environment. We find that,
under reasonable assumptions concerning the efficiency of a putative magnetogenesis era during cosmic phase transitions,
surprisingly strong magnetic fields 10−13–10−11 G, on comparatively small scales 100 pc–10 kpc may survive to prior
to structure formation. Additionally, any weak magnetic field will be exponentially amplified during the collapse of the
first minihalos until they reach equipartition with the turbulent kinetic energy. Hence, we argue that it seems possible for
cluster magnetic fields to be entirely of primordial origin.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Magnetic fields are ubiquitous in the local Universe (Beck
et al. 1996) and there is growing evidence of their presence
also at high redshifts (Bernet et al. 2008; Murphy 2009; Ro-
bishaw et al. 2008). The origin of those cosmic magnetic
fields is still an open issue. Although there are various pos-
sibilities to generate magnetic fields by astrophysical pro-
cesses (Biermann battery, Weibel instability) during and af-
ter structure formation (e.g. Bertone et al. 2006; Schlick-
eiser & Shukla 2003) it is still viable that those fields are
of primordial origin or at least are generated during very
early epochs. In particular, recent observations of Faraday
rotation measure (FRM) due to high redshift galaxies show
that strong magnetic fields are already present at redshifts
z > 1 (Bernet et al. 2008; Kronberg et al. 2008). Also γ-ray
observations from the FERMI satellite indicate that weak
magnetic fields are present in voids of galaxies (Neronov &
Vovk 2010; Tavecchio et al. 2010; Taylor et al. 2011), again
suggestive of a very early origin of cosmic fields (but see
also Broderick et al. 2012).

There are many suggestions to generate magnetic fields
by non-astrophysical processes in the Early Universe. Weak
seed fields could be produced during inflation with coher-
ence lengths exceeding the horizon (e.g. Gasperini et al.
1995; Turner & Widrow 1988) and by causal processes dur-
ing cosmic phase transitions (e.g. Sigl et al. 1997, see also
the reviews by Grasso & Rubinstein 2001 and Giovannini
2004). If the observed magnetic fields are indeed of primor-
dial origin their evolution during the cosmic epochs is far
from trivial. For instance, on the one hand, saturated and
strong fields will be dynamically damped by turbulent de-
cay (e.g. Banerjee & Jedamzik 2004; Jedamzik et al. 1998)
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and, on the other hand, weak fields will be amplified by the
small-scale dynamo (e.g. Brandenburg et al. 1995; Feder-
rath et al. 2011a; Matsuda et al. 1971; Schleicher et al. 2010;
Sur et al. 2010, 2012).

2 Damping of magnetic fields

In Banerjee & Jedamzik (2004) and Banerjee & Jedamzik
(2003) the non-linear evolution of cosmic magnetic
fields was calculated based on numerical magneto-hydro-
dynamical (MHD) simulations whose results we summarise
in this section (see also Jedamzik & Sigl 2011, for a more
recent application).

2.1 Turbulent magnetohydrodynamics

The exceedingly large Prandtl numbers in the early Uni-
verse allow one to neglect dissipative effects due to finite
conductivity. Further, the generation of primordial magnetic
fields in magnetogenesis scenarios is generally believed to
occur during well-defined periods (e.g. QCD-transition).
Subsequent evolution of these magnetic fields is therefore
described as a free decay without any further input of ki-
netic or magnetic energy, i.e. as freely decaying MHD. Due
to the largeness of the speed of sound in a relativistic plasma
vs = 1/

√
3, the assumption of incompressibility of the fluid

is appropriate during most epochs, as well as for a large
range of initial magnetic field configurations and energy
densities. Exception to the incompressibility may occur for
initial conditions which result in magnetic fields of strength
B >∼ 6×10−11 G (comoving to the present epoch) and of
course during the formation of the first stars and galaxies.

Incompressible MHD can be described by the following
equations
∂v

∂t
+ (v · ∇) v − (vA · ∇) vA = f , (1)
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∂vA

∂t
+ (v · ∇) vA − (vA · ∇) v = ν∇2 vA , (2)

where we have defined a local Alfvén velocity vA(x) =
B(x)/

√
4π(� + p), and where v, B, � and p are the veloc-

ity, magnetic field, mass-energy density, and pressure, re-
spectively. Here fluid dissipative terms in the Euler equation
are given by

f =

{
η∇2 v lmfp � l

−αv lmfp � l
, (3)

where there exists a distinction between dissipation due to
diffusing particles, with mean free path smaller than the
characteristic scale lmfp � L, or dissipation due to a free-
streaming (i.e. lmfp � L) background component exerting
drag on the fluid by occasional scatterings with fluid parti-
cles. Both regimes are of importance in the early Universe
as already noted in Jedamzik et al. (1998). An important
characteristics of the fluid flow is given by its local kinetic
Reynolds number

Re(l) =
v2/l

|f | =

⎧⎪⎪⎨
⎪⎪⎩

v l

η
lmfp � l

v

α l
lmfp � l

, (4)

with l some length scale. For most magnetic field configu-
rations it is possible to define an integral scale, L, i.e. the
scale which contains most of the magnetic and fluid kinetic
energy. We will also refer to this scale as the coherence scale
or coherence length of the magnetic field. In the case of tur-
bulent flow, with Re(L) � 1 on this scale, the decay rate of
the total energy is independent of dissipative terms and only
depends on the flow properties on the integral scale. This
is in contrast to the decay of magnetic and fluid energy in
the viscous regime, Re(L) � 1, where the total decay rate
depends on the magnitude of viscosities.

2.1.1 Nonhelical fields

Consider Eqs. (1) and (2) with a stochastic, statistically
isotropic, magnetic field and, for the purpose of illustration,
with initially zero fluid velocities. For the moment we will
also assume that the magnetic field does not possess any net
helicity. In the limit of large Reynolds numbers on the co-
herence scale, the dissipative term may be neglected on this
scale. Magnetic stresses will establish fluid motions of the
order v ≈ vA within an Alfvén crossing time τA ≈ l/vA, at
which point back reaction of the fluid flow on the magnetic
fields will prevent further conversion of magnetic field en-
ergy into kinetic energy. The resultant fully turbulent state
is characterized by close-to-perfect equipartition (in the ab-
sence of net helicity)

〈v2〉 ≈ 〈vA
2〉 , (5)

between magnetic and kinetic energy.
Non-linear MHD processes quickly establish turbulence

on scales below the integral scale (cf. Fig. 1). Working with
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Fig. 1 Evolution of magnetic energy spectra in the turbulent
regime for a magnetic field with no initial helicity with n ≈ 4
(from Banerjee & Jedamzik 2004).

Fourier transforms (assuming statistical isotropy and homo-
geneity) and defining the total magnetic- and kinetic- energy
density

E ≈
∫

d ln k k3
(
〈|vk|2〉+ 〈|vA,k|2〉

)
≡

∫
d ln k El , (6)

one finds that a typical rms-velocity perturbation on scale
l = 2π/k is vl ≈

√
k3〈|vk|2〉 ≈

√
El. Here we set

(� + p)/2 = 1, as frequently done in studies of incom-
pressible MHD, such that energy density has the dimension
of velocity square. From the Fourier transformed damping
equations one sees that the dissipation of energy is domi-
nated by flows on the smallest scales (largest k), given that
energy spectra El fall not too steeply with growing k. Dissi-
pation of energy into heat thus occurs at some much smaller
scale ldiss � L (where Re(l) ≈ 1). The transport of the fluid
energy from the integral scale L to the dissipation scale ldiss
occurs via a cascading of energy from large scales to small
scales, referred to as direct cascade.

It is known that this cascading of energy occurs as a
quasi-local process in k-space, with flow eddies on a par-
ticular scale l breaking up into eddies of somewhat smaller
scale∼ l/2 first described by Kolmogorov (1941). This con-
tinuous flow of energy through k-space

dEl

dt
≈ El

τl
≈ const(k), (7)

results in a quasi-stationary energy spectrum on scales
l <∼ L, with energy flow rates approximately independent of
wave vector. Typical energy dissipation times τL are given
by an eddy-turnover time at the integral scale τL ∼ τeddy ≈
L/vL ∼ L/(

√
EL).

Evolution of global properties of the magnetic field in
freely decaying MHD, such as total energy density and co-
herence length, depend on the magnetic field spectra on
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scales above the integral scale, l > L, and are related to ini-
tial conditions. Consider an initial magnetic field with blue
spectrum,

Ek ≈ E0

(
k

k0

)n

= E0

(
l

L0

)−n

for l > L0 . (8)

The scale-dependent relaxation time, τl ≈ l/vA,l ≈
l/
√

El (with vA,l =
√

k3〈|vA,k|2〉) increases with scale
as τl ∝ l1+n/2. Transfer of magnetic energy to kinetic en-
ergy and a fully developed turbulent state may only occur
for times t >∼ τl. When such a state is reached the energy on
this scale decays through the cascading of large-scale eddies
to smaller-scale eddies down to the dissipation scale. Since
the relaxation time for the “next” larger scale l is longer, this
larger scale now becomes to dominate the energy density,
i.e. becomes the integral- or coherence- scale. This is some-
times referred to as selective decay of modes in k-space.
The remaining energy density is then the initial energy den-
sity of modes between the very largest scales and this next
larger scale. Given these arguments and the initial spectrum
of Eq. (8) one then may derive for the time evolution of en-
ergy and coherence length of the magnetic field

E ≈ E0

(
t

τ0

)− 2n
2+n

,

L ≈ L0

(
t

τ0

) 2
2+n

, (9)

no helicity , Re � 1

for t >∼ τ0, where τ0 is the relaxation time on the scale L0,
i.e. τ0 ≈ L0/

√
E0 ≈ L0/vA

L,0, and where indices 0 de-
note quantities at the initial time. For instance, for a spectral
index of n = 3 (which corresponds to the large-scale mag-
netic field due to a large number of randomly oriented and
homogeneously distributed magnetic dipoles (Hogan 1983)
the energy density follows E ∝ t−6/5 which is Saffman’s
law known from fluid dynamics (Lesieur 2008; Saffman
1967).

An increase of magnetic field coherence scale with time
due to selective decay may be observed in Fig. 1, whereas
the decay of magnetic energy density for a variety of initial
magnetic field spectra is shown in Fig. 2. It can be seen
that initial spectra with larger n indeed lead to a more rapid
decrease of energy with time as predicted by Eq. (9).

2.1.2 Helical fields

So far the evolution of a statistically isotropic and homo-
geneous magnetic field in the absence of net helicity was
considered. Given that magnetic helicity should be an ideal
invariant in the early Universe (where the conductivity is
almost perfect), and that magnetic fields with even small
initial net helicity ultimately reach maximal helicity density

H <∼ Hmax ≈ 〈B2L〉 ≈ (8π) E L , (10)

it is important also study the maximally helical case. A max-
imally helical state is reached during the course of MHD
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Fig. 2 The evolution of the magnetic energy in the turbu-
lent regime for different initial energy spectra n, where Ek =
k3 |bk|2 ∝ kn with a cut-off kc ≈ 32 for the non-helical case.
In this case, the damping law depends on the spectral index (cf.
Eq. 9). For comparison, the theoretical predicted damping laws for
n = 1 (E ∝ t−0.67) and for n = 5 (E ∝ t−1.4) are also shown
(from Banerjee & Jedamzik 2004).

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100

E
k

k

t = 0.0 
t = 0.02
t = 0.04
t = 0.08
t = 0.15
t = 0.30
t = 0.61
t = 1.22

Fig. 3 Evolution of magnetic energy spectra in the turbulent
regime for magnetic fields with initially maximal helicity. The
spectral index of the energy spectra is n ≈ 4 (from Banerjee &
Jedamzik 2004).

turbulent evolution due to a slower decay of the helical com-
ponent of fields as compared to the non-helical one. When
maximal helicity is reached magnetic field evolution is sig-
nificantly altered with respect to the case of zero, or sub-
maximal helicity.

Figure 3 illustrates the intriguing property of self-
similarity of spectra at different times. This phenomenon of
self-similarity has also been observed by Christensson et al.
(2001). Magnetic field amplification on very large scales
occurs even at times much shorter than the typical relax-
ation time for magnetic fields (i.e. Alfvén crossing time) on
these scales, indicating the topological constraint imposed
on the field evolution. If magnetic fields on large scales
would not be enhanced, magnetic coherence length could
not grow with time, as generally the initially existing energy
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Fig. 4 The evolution of the magnetic energy in the turbu-
lent regime for different initial energy spectra n, where Ek =
k3 |bk|2 ∝ kn. Here, the initial magnetic field is maximal helical.
For comparison, also the theoretical damping law, E ∝ t−0.67, is
shown. In contrast to non helical case, the damping law for a heli-
cal magnetic field is nearly independent of the spectral index n for
n < 1 (from Banerjee & Jedamzik 2004).

density on large scales would not suffice to keepH constant.
Simulations of maximally helical fields with different initial
spectral indices n show that though the amplitude of large-
scale magnetic field grows with time, the spectral index of
the magnetic field configuration on large scales seems to be
approximately preserved.

The power-law exponents for the decay of energy and
growth of coherence length with time

E ≈ E0

(
t

τ0

)−2/3

,

L ≈ L0

(
t

τ0

)2/3

, (11)

maximal helicity , Re � 1
for t >∼ τ0 ≈ L0/

√
E0 ≈ L0/vA

L,0, yielding a predicted de-
cay which is independent of the spectral index of the large-
scale magnetic field.

Figure 4 shows the total magnetic energy as a function
of time for a variety of maximally helical magnetic fields
of different initial spectral index. With the exception of the
rather red spectrum n = 1, for which the Fourier transform
of helicity is not peaked in k-space, the decay of energy
seems to be indeed approximately independent of spectral
index.

2.2 Viscous magnetohydrodynamics

Magnetic field dissipation in high Prandtl number flu-
ids may also occur in the viscous regime, where kinetic
Reynolds numbers are much smaller than unity. Of particu-
lar importance to MHD evolution in the early Universe is
the case of photons or neutrinos free-streaming over the
scales of interest, lmfp � l, resulting in a drag force in
Eq. (1) with drag coefficient α.

In the terminal velocity regime one finds thus

v ≈ 1
α

(vA · ∇) vA , (12)

such that vl ≈ vA,L (τdrag/τA,l) � vA,l for τdrag ≡
α−1 � τA,l. This yields a kinetic Reynolds number of

Re ≈
(vA,l

α l

)2

� 1 . (13)

Though one would naively expect that at small Reynolds
number the total energy gets immediately dissipated due to
viscous terms, this is not the case (Jedamzik et al. 1998).
For large Prandtl number the energy may only be dissipated
via the excitation of fluid motions. Nevertheless, due to
the strong drag, such excitation is slow and inefficient, and
a system well below equipartition between magnetic- and
kinetic- energy results. Since the dissipation rate is propor-
tional to the velocity fluctuations v the net effect of strong
fluid viscosities is a delayed dissipation and quasi-frozen-in
magnetic fields. Note that in the case of viscous MHD, flows
are effectively dissipated on the integral scale, and cascad-
ing of energy in k-space is not required. One finds for the
energy dissipation rate

dE

dt
≈ E

τL
∼ E2

L2 α
(14)

with τL ≈ L/vL ∼ L2/α E. Hence the asymptotic power-
law for decay of energy density and growth of magnetic
field coherence length have the same form as Eq. (9) and
Eq. (11), and for the non-helical and helical case, respec-
tively, with τ0 replaced by τ visc

0 ≈ τA
L,0 (τA

L,0/τdrag) ≈
L2

0α/E0.

2.3 Evolution in the early Universe

The evolution of a stochastic magnetic field in the early Uni-
verse is described by alternating epochs of turbulent MHD
and viscous MHD. Here the latter epochs occur when vis-
cosities due to neutrinos, or photons, become significant.
Such a picture has already been established by Jedamzik
et al. (1998). Following the arguments in the Sect. 2.1 the
instantaneous integral scale is given by the equality between
cosmic time and eddy turnover time at the scale L

1
teddy

≈ v(L)
Lp(T )

≈ H(T ) ≈ 1
tH

. (15)

In the above expression the subscript p denotes the proper
(as opposed to comoving) value of the integral scale, v(L)
is the the fluid velocity on scale L, and H is the Hubble
parameter. The velocity in the turbulent regime is v(L) ≈
vA(L) and in the viscous regime v(L) ≈ v2

A(L) L/η and
v(L) ≈ v2

A(L)/α L, in the photon (neutrino) diffusive and
free-streaming viscous cases, respectively.

Figures 5 and 6 shows examples for the growth of L(T )
for a number of scenarios of magnetogenesis at the EW
and QCD phase transitions, respectively (see also Jedamzik
& Sigl 2011, for a similar calculation). The evolution is
observed as an alternation between turbulent MHD and
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Fig. 5 The evolution of comoving coherence length for initial
magnetic field configurations with different spectral indices n and
initial magnetic helicities. Solid lines from top to bottom: hg = 1,
rg = 0.01; hg = 10−3, n = 3, rg = 0.01; hg = 0, n = 3,
rg = 0.01; hg = 0, n = 3, rg = 10−5. The labels lν , lγ , lH refer
to the comoving mean free paths of neutrinos and photons and the
comoving Hubble length, respectively. The epoch of magnetogen-
esis was assumed to occur during the electroweak phase transition
(Tg = 100 GeV) (from Banerjee & Jedamzik 2004).

Fig. 6 The evolution of comoving coherence length for different
initial magnetic field configurations. Solid lines from top to bot-
tom: hg = 1, rg = 0.083, n = 3; hg = 10−3, rg = 0.083,
n = 3; hg = 0, rg = 0.083, n = 3. The epoch of magneto-
genesis was assumed to occur during the QCD phase transition
(Tg = 100 MeV) (from Banerjee & Jedamzik 2004).

viscous MHD. “Viscosity” here is early on due to neu-
trinos, some time before recombination due to photons,
and after recombination due to hydrogen-ion scattering
and hydrogen-hydrogen scattering. Particularly notable are
phases where the growth of L(T ) is halted completely. This
occurs either at epochs before recombination in the vis-
cous regime with diffusing photons or neutrinos, as well in
part of the regime when those particles are free-streaming
or at epochs after recombination. However, the growth of
L(T ) and concomitant decrease of B(T ) during the late
phases of viscous MHD with free-streaming photons (neu-
trinos) may be faster than the growth of L(T ) during turbu-
lent MHD. Those initial conditions lead to relatively strong

Fig. 7 Evolution of the dynamical quantities as a function of
τ =

∫
dt/tff , for five runs with different number of cells to re-

solve the local Jeans length. (a): the rms magnetic field strength
Brms, amplified to 1 mG from an initial field strength of 1 nG, (b):
the evolution of Brms/�

2/3
m , showing the turbulent dynamo ampli-

fication by dividing out the maximum possible amplification due
to pure compression of field lines, (c): the evolution of the mean
density �m, and (d): the rms velocity vrms. The onset of runaway
collapse commences at about τ ∼ 6 (from Sur et al. 2010).

magnetic fields at recombination and result in a rapid in-
crease of L(T ) at Trec ≈ 0.3 eV, whereas for weaker fields
B <∼ 10−13 G a similar jump occurs at reionization. Here,
effects due to structure formation are not taken into account
here (but see Sect. 3 below).

3 Amplification by the small-scale turbulent

dynamo

So far we have discussed the damping of magnetic fields
due to excitations of fluid motions in high Reynolds num-
ber plasma in the case of relatively strong magnetic fields,
i.e. for magnetic fields which energy is comparable to the ki-
netic energy of the cosmic gas. Otherwise, it is fairly unclear
how strong magnetic fields will be briefly after magnetogen-
esis as those scenarios are highly model dependent (see e.g.
the reviews Kandus et al. 2011; Widrow et al. 2012). Nev-
ertheless, if those primordial magnetic fields are very weak
(compared to the kinetic motions) they will undergo strong
amplification due to the small-scale dynamo as long as the
medium is turbulent. This was first pointed out Batchelor
(1950) and analytically analysed by Kazantsev (1968).

www.an-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The properties of the small-scale dynamo have been ex-
plored both in computer simulations of driven turbulence
without self-gravity and in analytic models (Brandenburg
& Subramanian 2005; Federrath et al. 2011a; Haugen et al.
2004; Schekochihin et al. 2004) as well as in the context of
magnetic fields during the formation of the first galaxies and
galaxy clusters (Latif et al. 2013; Sur et al. 2010, 2012; Xu
et al. 2009). Analytic estimates show that the small-scale
dynamo could be important already during the radiation
dominated era (Wagstaff et al. 2013) and during the forma-
tion of the first stars and galaxies (Arshakian et al. 2009; de
Souza & Opher 2010; Schleicher et al. 2010; Schober et al.
2012b).

In general one expects that weak magnetic fields will be
exponentially amplified with a growth rate Γ ∝ Re1/2 (in
the case of Kolomogorov type turbulence, see e.g. Schober
et al. 2012a,c). During the collapse of a primordial gas cloud
gravitational compression can at most lead to an amplifi-
cation of the magnetic field strength by a factor of ∼�2/3

in the limit of perfect flux freezing (i.e., ideal MHD). Any
stronger increase implies the presence of an additional am-
plification mechanism. The results of the collapse simula-
tions by Sur et al. (2010) are summarised in Fig. 7 where
one clearly observes field amplification by the small-scale
turbulent dynamo. Note that the amplification gets stronger
for higher resolution, i.e. for increasing Reynolds numbers,
as predicted by the Kazantsev theory (see also Federrath
et al. 2011b; Haugen et al. 2004).

4 Conclusions

Taken all together, the above results strongly indicate that
dynamically important magnetic fields will be present at
very early stages during cosmic evolution, hence they can
not be neglected in modelling structure formation and the
subsequent evolution. Nevertheless, further knowledge and
constraints on the magnetic fields strength and its coherence
length during the various epochs in the early universe is nec-
essary to fully understand the impact of magnetic fields.
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