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Abstract
The review summarizes present and future applications of galaxy clusters to
cosmology with emphasis on nearby X-ray clusters. The discussion includes the
density of dark matter, the normalization of the matter power spectrum, neutrino
masses, and especially the equation of state of the dark energy, the interaction
between dark energy and ordinary matter, gravitational holography, and the
effects of extra-dimensions.

1 Basic cosmological framework

The general framework for present cosmological work is set by three observational
results. The perfect Planckian shape of the cosmic microwave background (CMB)
spectrum as observed with the COBE satellite (Mather et al. 1990) clearly shows that
the Universe must have evolved – from a hot, dense, and opaque phase. The very
good correspondence of the observed abundance of light elements and the results of
Big Bang Nucleosynthesis (BBN, e.g. Burles, Nollett & Turner 2001) shows that
the cosmic expansion can be traced back to cosmological redshifts up to z = 1010.
Steigman (2002) pointed out that if these analyses would have been performed with
Newton gravity and not with Einstein gravity, then the observed abundances could
not be reconciled with the BBN predictions. One can take this as one of the few
indications than Einstein gravity can in fact be applied within a cosmological con-
text and underlines the importance of the BBN benchmark for any gravitational the-
ory. Finally, the consistency of the ages of the oldest stars in globular clusters (e.g.
Chaboyer & Krauss 2002) and the age of the Universe as obtained from cosmolog-
ical observations can be regarded as the long-waited ‘unification’ of the theory of
stellar structure and the theory of cosmic spacetime (Peebles & Ratra 2004). Tra-
ditionally, Friedmann-Lemaître (FL) world models as derived from Einstein’s field
equations for spatially homogeneous and isotropic systems, are assumed, character-
ized by the Hubble constant H0 in units of h = H0/(100 kms−1 Mpc−1), the nor-
malized density of cosmic matter Ωm (e.g., baryonic and Cold Dark Matter CDM),
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the normalized cosmological constant ΩΛ, and its equation of state w. Within this
general framework, clusters of galaxies are traditionally used as cosmological probes
on Gigaparsec scales. However, a precise test that one can apply Einstein gravity on
such large scales is still missing.

In Sect. 2, a summary of the basic properties of nearby galaxy clusters is given.
The hierarchical structure formation paradigm is tested with nearby galaxy clusters
in Sect. 3. Constraints on the density of dark matter (DM), the normalization of
the matter power spectrum, and neutrino masses are presented in Sect. 4. Obser-
vational effects of the equation of state of the dark energy (DE), and a first test of
a non-gravitational interaction between DE and DM are presented in Sect. 5. The
problem of the cosmological constant and its discussion in terms of the gravitional
Holographic Principle as well as the effect of an extra-dimension of brane-world
gravity are discussed in Sect. 6. Sect. 7 draws some conclusions. A general review
on clusters is given in Bahcall (1999), whereas Edge (2004) focuses on nearby X-
ray cluster surveys, Borgani & Guzzo (2001) on their spatial distribution, Rosati,
Borgani & Norman (2002) and Voit (2004) on their evolution.

2 Galaxy clusters

Galaxy clusters are the largest virialized structures in the Universe. Only 5% of the
bright galaxies (> L∗) are found in rich clusters, but more than 50% in groups and
poor clusters. The number of cluster galaxies brighter than m3 + 2m where m3 is
the magnitude of the third-brightest cluster galaxy, and located within 1.5 h−1 Mpc
radius from the cluster center, range for rich clusters from 30 to 300 galaxies, and
for groups and poor clusters from 3 to 30. For cosmological tests, rich clusters will
turn out to be of more importance so that the following considerations will mainly
focus on the properties of this type. Rich clusters have typical radii of 1−2 h−1 Mpc
where the surface galaxy density drops to ∼ 1% of the central density.

Baryonic gas, falling into the cluster potential well, is shock-heated up to tem-
peratures of Te = 107−8 K. The acceleration of the electrons in the hot plasma
(intracluster medium ICM) gives thermal Bremsstrahlung with a maximum emissiv-
ity at kBTe = 2−14 keV so that they can be observed in X-rays together with some
line emission. Typical X-ray luminosities range between Lx = 1042−45 h−2 erg s−1

in the energy interval 0.1 − 2.4 keV. With X-ray satellites like ROSAT, Chandra,
or XMM-Newton, these clusters can thus be detected up to cosmological interest-
ing redshifts. However, only a few clusters are detected at redshifts beyond z = 1
(Rosati et al. 2002; Mullis et al. 2005).

Galaxy clusters are rare objects with number densities of 10−5 h3 Mpc−3, strongly
decreasing with X-ray luminosity or cluster mass (Böhringer et al. 2002). Current
structure formation models predict of the order of 106 rich galaxy clusters in the
visible Universe, the majority with redshifts below z = 2. More than 5 000 nearby
galaxy clusters are already identified in the optical as local concentrations of galax-
ies, and 2 000 by their (extended) X-ray emission. Surveys planned for the next
few years like the Dark Universe Observatory DUO (Griffiths, Petre, Hasinger et al.
2004) could yield about 104 clusters possibly up to z = 2, that is, already 1% of
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the total cluster population. It appears thus not completely illusory to finally get an
almost complete census of all rich galaxy clusters in the visible Universe.

X-ray clusters get their importance for cosmology because of the tide correlations
between observables like X-ray temperature or X-ray luminosity and total gravitating
cluster mass which allow a precise reconstruction of the cosmic mass distribution on
large scales.

Knowledge of the total gravitating mass of a cluster within a well-defined radius,
is of crucial importance. The masses are summarized in cluster mass functions which
depend on structure formation models through certain values of the cosmological
parameters. However, cosmic mass function appear to be independent of cosmology
when they are written in terms of natural “mass” and “time” variables (Lacey & Cole
1994). Model mass functions can either be predicted from semi-analytic models (e.g,
Sheth & Tormen 2002, Schuecker et al. 2001a, Amossov & Schuecker 2004) or from
N-body simulations, the latter with errors between 10 to 30% (Jenkins et al. 2001;
Springel et al. 2005).

Cluster masses can be determined in the optical by the velocity dispersion of clus-
ter galaxies or in X-rays from, e.g., the gas temperature and density profiles, assum-
ing virial and hydrostatic equilibrium, respectively (and spherical symmetry). Grav-
itational lensing uses the distortion of background galaxies and determines the pro-
jected cluster mass without any specific assumption (e.g., Kaiser & Squires 1993).
For regular clusters, the masses of galaxy clusters are consistently determined with
the three methods and range between 1014 − 1015 h−1 M� (e.g., Wu et al. 1998).
Several projects are currently under way to compare the mass estimates obtained
with the different methods in more detail. The baryonic mass in clusters comes from
the ICM and the stars in the cluster galaxies. The ratio between the baryonic and
total gravitating mass (baryon fraction) in a cluster is about 0.07h−1.5 + 0.05.

Systematic X-ray studies of large samples of galaxy clusters have revealed that
about half of the clusters have significant substructure in their surface brightness dis-
tributions, i. e., some deviations from a perfect regular shape (e.g. Schuecker et al.
2001b). For the detection of substructure, different methods as summarized in Fer-
etti, Giovannini & Gioa (2002) give substructure occurence rates ranging from 20 to
80%. The large range clearly shows that the definition of a well-defined mass thresh-
old for substructure and the measurement of the masses of the different subclumps
is difficult and has not yet been regorously applied. Further interesting ambiguities
arise because clusters appear more regular in X-ray pseudo pressure maps (product
of projected gas mass density and gas temperature) whereas contact discontinuities
and shock fronts caused by merging events appear more pronounced in pseudo en-
tropy and temperature maps (Briel, Finoguenov & Henry 2004).

Substructering is taken as a signature of the dynamical youth of a galaxy cluster.
The most dramatic distortions occure when two big equal mass clumps collide (ma-
jor merger) to form a larger cluster. With the ROSAT satellite, merging events could
be studied for the first time in X-rays in more detail (e.g. Briel, Henry & Böhringer
1992). A typical time scale of a merger event is 109 yr where the increased gas den-
sity and X-ray temperature can boost X-ray luminosities up to factors of five (Ran-
dall, Sarazin & Ricker 2002). The XMM-Newton and especially the Chandra X-ray
satellite allows more detailed studies of substructures down to arcsec scales. Sub-
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Figure 1: Left: Normalized comoving REFLEX cluster number densities as a function of
redshift, and comoving radial distance R. Vertical error bars represent the formal 1σ Poisson
errors. Right: Histogram of the normalized KL coefficients of the REFLEX sample and
superposed Gaussian profile. The Kolmogorov-Smirnov probability for Gaussianity is 93%.

structures in form of cavities and bubbles (Böhringer et al. 1993, Fabian et al. 2000),
cold fronts (Vikhlinin, Markevitch & Murray 2001), weak shocks and sound waves
(Fabian et al. 2003), strong shocks (Forman et al. 2003), and turbulence (Schuecker
et al. 2004) were discovered, possibly triggered by merging events and/or AGN ac-
tivity. With the ASTRO-E2 satellite planned to be launched in 2005, the line-of-sight
kinematics of the ICM will be studied for the first time to get more information about
the dynamical state of the ICM. The majority of the abovementioned substructures
have low amplitudes which do not much disturb radially-averaged cluster profiles
(after masking) and thus cluster mass estimates. In fact, the hydrostatic equation
relates the observed smooth pressure gradients to the total gravitating cluster mass,
which makes the robustness of X-ray cluster mass estimates from numerical sim-
ulations plausible (Evrard, Metzler & Navarro 1996, but see Sect. 7). Present cos-
mological tests based on galaxy clusters assume that the diversity of regular and
substructured clusters contribute only to the intrinsic scatter of the observed X-ray
luminosity-mass relation or similar diagnostics, while keeping the shape and nor-
malization of the original relation almost unaltered.

The remaining about 50% of the clusters appear quite regular - a significant frac-
tion of these clusters have very bright X-ray cores, where the dense gas could signifi-
cantly cool. Such cooling core clusters are expected to be in a very relaxed dynamical
state since several Gigayears. Numerical simulations suggest that the baryon fraction
in these clusters is close to the universal value and can be used after some corrections
as a cosmic ‘standard candle’ (e.g. White et al. 1993).

For nearby (z < 0.3) rich systems, evolutionary effects on core radius and en-
tropy input are found to be negligible (Rosati et al. 2002). Detailed XMM studies at
z ∼ 0.3 can be found in Zhang et al. (2004). Therefore, cosmological tests based on
massive nearby clusters with gas temperatures kBTe > 3 keV are expected to give re-
liable results. For these systems, the observed X-ray luminosity can be transformed
into the theory-related cluster mass with empirical luminosity-mass or similar rela-
tions characterized by their shape, intrinsic scatter, and normalization (e.g., Reiprich
& Böhringer 2002). It will be shown that with such methods, cosmological tests can
be performed presently on the 20-30% accuracy level.
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Further improvements on cluster scaling relations are thus necessary to reach (if
possible) the few-percent level of ‘precision cosmology’. Large and systematic ob-
servational programms based on Chandra and XMM-Newton observations are now
under way which are expected to significantly improve the relations within the next
few years (e.g., XMM Large Programme, Böhringer, H. et al., in prep., and a large
XMM/Chandra project of Reiprich, T. H. et al., in prep.). For cosmological tests
with distant rich clusters, additional work is necessary. Gravitationally-induced evo-
lutionary effects due to structure growth, and non-gravitationally-induced evolution-
ary effects like ICM heating through galactic winds caused by supernovae (SNe),
and heating by AGN cause systematic deviations from simple self-similarity expec-
tations (Kaiser 1986; Ponman, Cannon & Navarro 1999). For cosmological tests,
such evolutionary effects add further degrees of freedom to be determined simulta-
neously with the cosmological parameters (e.g., Borgani et al. 1999).

3 Hierarchical structure formation paradigm

Structure formation on the largest scales as probed by galaxy clusters is mainly
driven by gravity and should thus be understandable in a simple manner. How-
ever, reconciling the tiny CMB anisotropies at z ≈ 1100 with the very large inho-
mogeneities of the local galaxy distribution has shown that the majority of cosmic
matter must come in nonbaryonic form (e.g., CDM). A direct consequence of such
scenarios is that clusters should grow from Gaussian initial conditions in a quasi
hierarchical manner, i.e., less rich clusters and groups tend to form first and later
merge to build more massive clusters. The merging of galaxy clusters as seen in
X-rays (Sect. 2) is a direct indication that such processes are still at work in the local
universe.

A further argument for hierarchical structure growth comes from the spatial dis-
tribution of galaxy clusters on 102 h−1 Mpc scales. Less then 1/10 of this distance
can be covered by cluster peculiar velocities within a Hubble time, keeping in this
linear regime the Gaussianity of the cosmic matter field as generated by the chaotic
processes in the early Universe almost intact. This Gaussianity formally stems from
the random-phase superposition of plane waves and the central limit theorem (super-
position approximation). The peaks of this random field will eventually collapse to
form virialized clusters. The relation between the spatial fluctuations of the clusters
and the underlying matter field is called ‘biasing’. For Gaussian random fields, the
biasing tend to concentrate the clusters in regions with the highest global matter den-
sity in a manner that their correlation strengths r0 increase with cluster mass (Kaiser
1984) - otherwise they would immediately distroy Gaussianity (e.g. if we would put
a very massive cluster into a void of galaxies). Peculiar velocities of the clusters
induced by the resulting inhomogeneities modify the r0-mass relation, but without
disturbing the general trend (peak-background split of Efstathiou, Frank & White
1988, & Mo & White 1996). In the linear regime, we thus expect a Gaussian distri-
bution of the amplitudes of cluster number fluctuations which increase with mass in
a manner as predicted by the specific hierarchical scenario.
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Figure 2: Left: Comparison of the observed REFLEX power spectrum (points with error
bars) with the prediction of a spatially flat ΛCDM model with a matter density of Ωm = 0.34
and σ8 = 0.71. Errors include cosmic variance and are estimated with numerical simulations.
Right: Comparison of observed power spectral densities and predictions of a low-density
CDM semi-analytic model as a function of lower X-ray luminosity, i.e., lower X-ray cluster
mass (Schuecker et al. 2001c). The errors include cosmic variance and are obtained from
N-body simulations.

The REFLEX catalogue (Böhringer et al. 2004)1 provides the largest homo-
geneously selected sample of X-ray clusters and is ideally suited for testing spe-
cific hierarchical structure formation models. The sample comprises 447 southern
clusters with redshifts z ≤ 0.45 (median at z = 0.08) down to X-ray fluxes of
3.0 × 10−12 erg s−1 cm−2 in the energy range (0.1 − 2.4) keV, selected from the
ROSAT All-Sky Survey (Böhringer et al. 2001). Several tests show that the sample
cannot be seriously affected by unknown selection effects. An illustration is given
by the normalized, radially-averaged comoving number densities along the redshift
direction (Fig. 1 left). The densities fluctuate around a z-independent mean as ex-
pected when no unknown selection or evolutionary effects are present. Further tests
can be found in Böhringer et al. (2001, 2004); Collins et al. (2000) and Schuecker
et al. (2001c).

Tests of the Gaussianity of the cosmic matter field refer to the superposition ap-
proximation mentioned above. They may divide the survey volume into a set of large
non-overlapping cells, count the clusters in each cell, decompose the fluctuation field
of the cluster counts into plane waves via Fourier transformation, and check whether
the frequency distribution of the amplitudes of the plane waves (Fourier modes with
wavenumber k) follow a Gaussian distribution. However, the survey volume pro-
vides only a truncated view of the cosmic matter field which will result in an er-
roneous Fourier transform (the result obtained will be the convolution of the true
Fourier transform with the survey window function). The truncation effect com-
prises both the reduction of fine details in the Fourier transform and the correlation

1http://www.xray.mpe.mpg.de/theorie/REFLEX/
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of Fourier modes so that fluctuation power migrates between the modes. This leak-
age effect increases when the symmetry of the survey volume deviates from a perfect
cubic shape. Uncorrelated amplitudes can be obtained, when the fluctuations are de-
composed into modes which follow to some extent the shape of the survey volume.
The Karhunen-Loèwe (KL) decomposition determines such eigenmodes under the
constraint that the resulting KL fluctuation amplitudes are statistically uncorrelated.
This construction is quite optimal for testing cosmic Gaussianity. The KL eigen-
modes are the eigenvectors of the sample correlation matrix, i.e., the matrix giving
the expected correlations between the number of clusters obtained in pairs of count
cells as obtained with a fiducial (e.g. concordance) cosmological model. KL modes
were first applied to CMB data by Bond (1995), to galaxy data by Vogeley & Sza-
lay (1996), and to cluster data by Schuecker et al. (2002). The linearity of the KL
transform and the direct biasing scheme expected for galaxy clusters suggest that the
statistics of the KL coefficients should directly reflect the statistics of the underlying
cosmic matter field.

Figure 1 (right) compares a standard Gaussian with the frequency distribution of
the observed KL-transformed and normalized cluster counts obtained with REFLEX.
The cell sizes are larger than 100 h−1 Mpc and thus probe Gaussianity in the linear
regime. The observed Gaussianity of the REFLEX data suggests Gaussianity of the
underlying cosmic matter field on such large scales. This is a remarkable finding,
taking into account the difficulties one has to test Gaussianity even with current CMB
data (Komatsu et al. 2003, Cruz et al. 2004).

Figure 3: Compilation of fluctuation power spectra of various cosmological objects as com-
plited by Tegmark & Zaldarriaga (2002) with the added REFLEX power spectrum. The con-
tinuous line represents the concordance ΛCDM structure formation model.
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As mentioned above, hierarchical structure formation predicts that the ampli-
tudes of the fluctuations should increase in a certain manner with mass. On scales
small compared to the maximum extent of the survey volume, the fluctuation field
roughly follows the superposition approximation. In this scale range, it is very con-
vinient to test the mass-dependent amplitude effect with a simple plane wave de-
composition as summarized by the power spectrum P (k) 2. Fig. 2 (left) shows that
the observed REFLEX power spectrum of the complete sample is well fit by a low-
density ΛCDM model. Comparisons with other hierarchical scenarios are found to
be less convincing (Schuecker et al. 2001c). In contrast to the ‘standard CDM’
model with Ωm = 1, in low-density (open) CDM models, the epoch of equality of
matter and radiation occure rather late and the growth of structure proceeds over a
somewhat smaller range of redshift, until (1+z) = Ω−1

m . Consequently, the turnover
in P (k) is at larger scales, leaving less power on small scales. The nonzero cosmo-
logical constant of a (flat) ΛCDM scenario stretches out the time scales of the model
until (1 + z) = Ω−1/3

m . The differences in the dynamics of structure growth are thus
not very large compared to an open CDM model and become only important at late
stages. Note, however, that when all models are normalized to the local Universe, the
opposite conclusion is true. The behaviour of the cluster fluctuation amplitude with
mass (X-ray luminosity) for a low-density CDM model is shown in Fig. 2 (right).
The predictions are shown as continuous and dashed lines which nicely follow the
observed trends. The model includes an empirical relation to convert cluster mass
to X-ray luminosity (Reiprich & Böhringer 2002), a model for quasi-nonlinear and
linear structure growth (Peebles 1980), a biasing model (Mo & White 1996, Matar-
rese et al. 1997), and a model for the transformation of the power spectrum from real
space to redshift space (Kaiser 1987).

However, one could still argue that clusters constitute only a small population of
all cosmological objects visible over a limited redshift interval, and could therefore
not give a representative view of the goodness of hierarchical structure formation
models. Fig. 3 summarizes power spectra obtained with various cosmological tracer
objects as compiled by Tegmark & Zaldarriaga (2002) including the REFLEX power
spectrum. All spectra are normalized by their respective biasing parameters (if nec-
essary). The combined power spectrum covers a spatial scale range of more than four
orders of magnitude and redshifts between z = 1100 (CMB) and z = 0. The good
fit of the ΛCDM model shows that this hierarchical structure formation model is re-
ally very successful in describing the clustering properties of cosmological objects.
The following cosmological tests thus assume the validity of this structure formation
model.

4 Ordinary matter

The observed cosmic density fluctuations are very well summarized by a low mat-
ter density ΛCDM model (Sect. 3). Therefore, many cosmological tests refer to
this structure formation scenario. In general, baryonic matter, Cold Dark Matter

2The KL method would need many modes to test small scales which is presently too computer-
intensive
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(CDM), primeval thermal remnants (electromagnetic radiation, neutrinos), and an
energy corresponding to the cosmological constant give the total (normalized) den-
sity of the present Universe, Ωtot = Ωb + ΩCDM + Ωr + ΩΛ. The normalized
density of ordinary matter comprises the first three components. Recent CMB data
suggest Ωtot = 1.02 ± 0.02 (Spergel et al. 2003), i.e., an effectively flat uni-
verse with a negligible spatial curvature. The same data suggest a baryon density
of Ωbh2 = 0.024±0.001 and h = 0.72±0.05. For our purposes, the energy density
of thermal remnants, Ωr = 0.0010 ± 0.0005 (Fukugita & Peebles 2004), can be ne-
glected, yielding the present cosmic matter density Ωm = Ωb + ΩCDM. At the end
of this section, an estimate of Ωr including only the neutrinos is given.

Within this context of the hierarchical structure formation, the occurence rate of
substructure seems to be a useful diagnostic to test different cosmological parame-
ters because a high merger rate implies a high Ωm (e.g., Richstone, Loeb & Turner
1992, Lacey & Cole 1993). However, as mentioned in Sect. 2, the effects of sub-
structure are difficult to measure and to quantify in terms of mass so that presently
less stringent constraints are attainable (for a recent discussion see, e.g., Suwa et al.
2003).

A simple though h-dependent estimate of Ωm can be obtained from the comoving
wavenumber of the turnover of the power spectrum because it corresponds to the
horizon length at the epoch of matter-radiation equality keq = 0.195Ωmh2 Mpc (e.g.
Peebles 1993) below which most structure is smoothed-out by free-streaming CDM
particles. A small Ωm or a small Hubble constant thus shifts the maximum of P (k)
towards larger scales. The product Γ = Ωmh is referred to as the shape parameter
of the power spectrum. For the REFLEX power spectrum, the turnover is at keq =
0.025± 0.005 (Fig. 2), so that for h = 0.72 a matter density of Ωm = 0.25± 0.05 is
obtained. In this case, the shape parameter is Γ = 0.18 ± 0.03 which is typical for
ΛCDM.

Cluster abundance measurements are a classical application of galaxy clusters in
cosmology to determine the present density of cosmic matter, Ωm, either assuming
a negligible effect of ΩΛ or not. The effective importance of ΩΛ on geometry and
structure growth cannot be neglected for clusters with z > 0.5. A related quantity
is the variance of the matter fluctuations in spherical cells with radius R and Fourier
transform W (kR): σ2(R) = 1

2π2

∫ ∞
0 dk k2 P (k) |W (kR)|2. The specific value σ8

at R = 8 h−1 Mpc characterizes the normalization of the matter power spectrum
P (k). Recent CMB data suggest σ8 = 0.9 ± 0.1 (Spergel et al. 2003).

In the following, the abundance of galaxy clusters is used to determine simul-
taneously the values of Ωm and σ8. Early applications of the method can be found
in, e.g., White, Efstathiou & Frenk (1993), Eke, Cole & Frenk (1996), and Viana
& Liddle (1996) suggesting a stronge degeneracy between Ωm and σ8 of the form
σ8 = (0.5 − 0.6)Ω−0.6

m . To understand this degeneracy and the high sensitivity of
cluster counts on the values of the cosmological parameters, consider the expected
number of clusters observed at a certain redshift and flux limit,

dN(z, flim) = dV (z)
∫ ∞

Mlim(z,flim)

dM
dn(M, z, σ2(M))

dM
. (1)

For optically selected samples, the flux limit has to be replaced by a richness (or
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optical luminosity) limit. The cosmology-dependency of dN stems from the comov-
ing volume element dV , the mass limit Mlim at a certain redshift, and the shape of
the cosmic mass function dn/dM . Three basic cosmological tests are thus applied
simultaneously, which explains the high sensitivity of cluster counts on cosmology,
although sometimes effects related to structure growth and geometric volume can
work against each other (Sect. 5).

The summation in (1) is over cluster mass whereas observations yield quanti-
ties like X-ray luminosity, gas temperature, richness etc. The conversion of such
observables into mass is the most crucial step where most of the systematic errors
can occure. For more massive systems, likely contributors to systematic errors are
effects related to cluster merging, substructures, and cooling cores. Cluster merging
increases the gas density and temperature and thus the X-ray luminosity which in-
creases the detection probablity in X-rays. The overall statistical effect is difficult to
quantify, but systematic errors in the cosmological parameters on the 20% level can
be reached (Randall et al. 2002). For less massive systems, further effects related
to additional heat input by AGN, star formation, galactic winds driven by SNe, etc.
lead to deviations from self-similar expectations (Sect. 2), and increase the scatter
in scaling relations. Such effects are quite difficult to simulate (e.g., Borgani et al.
2004, Ettori et al. 2004).

Equation (1) can directly be applied to flux-selected cluster samples as obtained
in X-rays or millimeter wavelengths. The latter surveys detect clusters via the Sun-
yaev-Zel’dovich (SZ) effects (e.g., Birkinshaw, Gull & Hardebeck 1984, Carlstrom,
Holder & Reese 2002). Here, energy of the ICM electrons is locally transferred
through inverse Compton (Thomson) scattering to the CMB photons so that the num-
ber of photons on the long wavelength side of the Planck spectrum is depleted. After
this blue-shift, each cluster is detected at wavelengths beyond 1.4 mm as decrements
against the average CMB background, and at shorther wavelengths as increments.
This process thus measures deviations relative to the actual CMB background and is
thus redshift-independent so that cluster detection does not has to work against the
(1+z)4 Tolman’s surface brightness dimming which is especially important for very
distant clusters. Certain blind SZ surveys are now in preparation (SZ-Array starting
2004; AMI 2004, APEX-SZ 2005, ACT 2007, SPT 2007 and Planck 2007). The flux
limits in X-rays and submm allow after some standard corrections a very accurate
determination of the volume accessable by a cluster with certain X-ray or submm
properties.

The detection of clusters in the optical is more complicated (e.g., red-sequence
method in Gladders, Yee & Howard 2004, matched filter method in Postman et al.
1996, Schuecker & Böhringer 1998, Schuecker, Böhringer & Voges 2004). For the
application of Eq. (1) to optically selected cluster samples, the mass limit Mmin(z)
has to be obtained with numerical simulations in a more model-dependent manner
(e.g., Goto et al. 2002, Kim et al. 2002).

For cosmological tests, the values of the parameters are changed until observed
and predicted numbers of clusters agree. In order to avoid the evaluation of 3rd and
4th-order statistics in the error determination, the parameter matrices should be as
diagonal as possible. This can be achieved, when the cluster cell counts are trans-
formed into the orthonormal base generated by the KL eigenvectors of the sample
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Figure 4: Left: Likelihood contours (1 − 3σ level for two degrees of freedom) as obtained
with the REFLEX sample. Right: Same likelihood contours as left for a different empirical
mass/X-ray luminosity relation.

correlation matrix (Sect. 3). With the REFLEX sample, the classical Ωm-σ8 test was
performed with the KL base (Schuecker et al. 2002, 2003a). The observed Gaus-
sianity of the matter field directly translates into a multi-variant Gaussian likelihood
function, and includes in a natural manner a weighting of the squared differences
between KL-transformed observed and modeled cluster counts with the variances of
the transformed counts. Not only the mean counts in the cells but also their variances
from cell to cell depend on the cosmological model. The KL method thus simulta-
neously tests both mean counts and their fluctuations which increases the sensitivity
of the method even more. The method was extensively tested with clusters selected
from the Hubble Volume Simulation. Note that for the application of the KL method
to galaxies of the Sloan Digital Sky Survey (SDSS, Szalay et al. 2003, Pope et al.
2004) only the fluctuations could be used and were in fact enough to provide con-
straints on the 10-percent level.

A typical result of a cosmological test of Ωm and σ8 with REFLEX clusters is
shown in Fig. 4. Note the small parameter range covered by the likelihood contours
and the residual Ωm-σ8 degeneracy: For (flat) ΛCDM and low z, structure growth
is negligible, and the Ωm-σ8 degeneracy is related to the fact that a small σ8 (corre-
sponding to a low-amplitude power spectrum) yields a small comoving cluster num-
ber density, whereas a large Ωm (corresponding to a low mass limit Mmin) yields a
large comoving number density. For (flat) ΛCDM and high z, structure growth and
comoving volume do again not strongly depend on Ωm, but the number of high-z
clusters increases with decreasing Ωm because for a fixed cluster number density at
z = 0 the normalization σ8 has to be increased when Ωm is decreased as shown
above. However, the sensitivity on structure growth becomes apparent once open
and flat models are compared (Bahcall & Fan 1998).

For the test, further cosmological parameters like the Hubble constant, the pri-
mordial slope of the power spectrum, the baryon density, the biasing model, and the
empirical mass/X-ray luminosity relation had fixed prior values. The final REFLEX
result is obtained by marginalizing over these parameters and yields the 1σ corridors
0.28 ≤ Ωm ≤ 0.37 and 0.56 ≤ σ8 ≤ 0.80.
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As mentioned above, the largest uncertainty in these estimates comes from the
empirical mass/X-ray luminosity relation obtained for REFLEX from mainly ROSAT
and ASCA pointed observations by Reiprich & Böhringer (2002) - compare Fig. 4
left and right. Tests are in preparation with a four-times larger X-ray cluster sample
of 1 500 clusters combining a deeper version of REFLEX with an extended version
of the cluster catalogue of Böhringer et al. (2000) of the northern hemisphere, plus a
more precise M/L-relation obtained over a larger mass range with the XMM-Newton
satellite. Errors below the 10-percent level are expected.

Variants of the cluster abundance method use the X-ray luminosity or the gas
temperature function. For the transition from observables to mass, often the relations
mass-temperature and luminosity-temperature are used. As an example, Borgani et
al. (2001) obtained comparatively strong constraints using a sample of clusters up to
z = 1.27 yielding the 1σ corridors 0.25 ≤ Ωm ≤ 0.38 and 0.61 ≤ σ8 ≤ 0.72.

White et al. (1993) pointed out that the matter content in rich nearby clusters pro-
vides a fair sample of the matter content of the Universe. The ratio of the baryonic to
total mass in clusters should thus give a good estimate of Ωb/Ωm. The combination
with determinations of Ωb from BBN (constrained by the observed abundances of
light elements at high z) can thus be used to determine Ωm (David, Jones & Forman
1995; White & Fabian 1995; Evrard 1997). Extending the universality assumption
on the gas mass fraction to distant clusters, Ettori & Fabian (1999) and later Allen
et al. (2002) could show that at a certain distance from the center (density contrast)
of quite relaxed distant clusters, the observed X-ray gas mass fraction tends to con-
verge to a universal value. To illustrate the potential power of the method note that
after further corrections, the results obtained by Allen et al. with only seven ap-
parently relaxed clusters up to z = 0.5 were already sensitive enough to constrain
the cosmic matter density, Ωm = 0.30+0.04

−0.03. Later work includes more clusters
up to z = 0.9 and cluster abundances from the REFLEX-sample (Böhringer et al.
2004) and the BCS sample (Ebeling et al. 1998), and yields the 1σ error corridors
0.25 ≤ Ωm ≤ 0.33 and 0.66 ≤ σ8 ≤ 0.74 (Allen et al. 2003). However, the
method shares some similarity with the type-Ia SNe method in the sense that the
validity of the gas mass fraction as a cosmic standard candle especially at high z is
mainly based on observational arguments, partially supported by numerical simula-
tions. The overlap of the error corridors of the less-degenerated results of Borgani et
al. (2001), Schuecker et al. (2003a), and Allen et al. (2003) yields our final result

Ωm = 0.31 ± 0.03 . (2)

Other measurements show the Ωm-σ8 degeneracy more pronounced over a larger
range. When all measurements are evaluated at Ωm = 0.3, the values of σ8 appear
quite consistent at a comparatively low normalization of

σ8 = 0.76 ± 0.10 , (3)

within the total range 0.5 < σ8 < 1.0 (data compiled in Henry 2004 from Bahcall et
al. 2003; Henry 2004; Pierpaoli et al. 2003; Ikebe et al. 2002; Reiprich & Böhringer
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2002; Rosati et al. 2002; including Allen et al. 2003 and Schuecker et al. 2003a with
small degeneracies)3.

Recent neutrino experiments are based on atmospheric, solar, reactor, and accel-
erator neutrinos. All experiments suggest that neutrinos change flavour as they travel
from the source to the detector. These experiments give strong arguments for neu-
trino oscillations and thus nonzero neutrino rest masses mν (e.g. Ashie et al. 2004
and references given therein). Further information can be obtained from astronom-
ical data on cosmological scales. The basic idea is to measure the normalization of
the matter CDM spectrum with CMB anisotropies on several hundred Mpc scales.
This normalization is transformed with structure growth functions to 8 h−1 Mpc at
z = 0 assuming various neutrino contributions. This normalization should match
the σ8 normalization from cluster counts (e.g., Fukugita, Liu & Sugiyama 2000).
Recent estimates are obtained by combining CMB-WMAP data with the 2dFGRS
galaxy power spectrum, X-ray cluster gas mass fractions, and X-ray cluster luminos-
ity functions (Allen, Schmidt & Bridle 2003). For a flat universe and three degenerate
neutrino species, they measured the contribution of neutrinos to the energy density
of the Universe, and a species-summed neutrino mass, and their respective 1σ errors,

Ων = 0.006± 0.003 ,
∑

i

mi = 0.6 ± 0.3 eV , (4)

which formally corresponds to mν ≈ 0.2 eV per neutrino. Their combined anal-
ysis yields a normalization of σ8 = 0.74+0.12

−0.07, which is consistent with the recent
measurements with galaxy clusters mentioned above. From CMB, 2dFGRS and Ly-
α forest data, Spergel et al. (2003) obtained the 2σ constraint mν < 0.23 eV per
neutrino. In a similar analysis including also SDSS galaxy clustering, Seljak et al.
(2004) found mν < 0.13 eV for the lightest neutrino (at 2σ). Estimates from neu-
trino oscillations suggest mν ≈ 0.05 eV for at least one of two neutrino species,
consistent with the Fukugita & Peebles (2004) estimate given above.

5 Dark energy

The present state of the cosmological tests is illustrated in Fig. 5 (left). The com-
bination of the likelihood contours obtained with three different observational ap-
proaches (type-Ia SNe: Riess et al. 2004; CMB: Spergel et al. 2003; galaxy clusters:
Schuecker et al. 2003b) shows that the cosmic matter density is close to Ωm = 0.3,
and that the normalized cosmological constant is around ΩΛ = 0.7. This sums
up to unit total cosmic energy density and suggests a spatially flat universe. How-
ever, the density of cosmic matter growths with redshift like (1 + z)3 whereas the
density ρΛ related to the cosmological constant Λ is independent of z. The ratio

3Vauclair et al. (2003) could find a consistent solution between local and high redshift X-ray tem-
perature distribution functions and the redshift distributions of distant X-ray cluster surveys using mass-
temperature and luminosity-temperature relations. Their best model has Ωm > 0.85 and σ8 = 0.455,
and the shape parameter, Γ = Ωm h ≈ 0.1. For a ‘standard’ ΛCDM model this implies h < 0.12, in
conflict with many observations. However, they use a different family of power spectra and thus work
outside the standard ΛCDM paradigm.
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ΩΛ/Ωm today is close to unity and must thus be a finely-tuned infinitesimal constant
ΩΛ/(Ωm(1 + z∞)3) set in the very early Universe (cosmic coincidence problem).
An alternative hypothesis is to consider a time-evolving ‘dark energy’ (DE), where

Figure 5: Left: Present situation of cosmological tests of the matter density Ωm and the
normalized cosmological constant ΩΛ from different observational approaches (Böhringer,
priv. com.). Right: Null Energy Condition (NEC) and Strong Energy Condition (SEC) for
a flat FL spacetime at redshift z = 0 with negligible contributions from relativistic particles
in the parameter space of the normalized cosmic matter density Ωm and the equation of state
parameter of the dark energy wx. More details are given in the main text.

in Einstein’s field equations the time-independent energy density ρΛ of the cosmo-
logical constant is replaced by a time-dependent DE density ρx(t),

Gµν = −8πG

c4

[
Tµν + ρΛ→x(t) c2 gµν

]
, (5)

while assuming that the ‘true’ cosmological constant is either zero or negligible.
Here, Gµν is the Einstein tensor, Tµν the energy-momentum tensor of ordinary mat-
ter, and gµν the metric tensor. For a time-evolving field (see, e.g., Ratra & Peebles
1988, Wetterich 1988, Caldwell et al. 1998, Zlatev, Wang & Steinhardt 1999, Cald-
well 2002, recent review in Peebles & Ratra 2004) the aim is to understand the
coincidence in terms of dynamics. A central rôle in these studies is assumed by the
phenomenological ratio

wx =
px

ρxc2
(6)

(equation of state) between the pressure px of the unknown energy component and its
rest energy density ρx. Note that wx = −1 for Einstein’s cosmological constant. The
resulting phase space diagram of DE (Fig. 5, right) distinguishes different physical
states of the two-component cosmic fluid – separated by two energy conditions of
general relativity (Schuecker et al. 2003b).

Generally, assumptions on energy conditions form the basis for the well-known
singularity theorems (Hawking & Ellis 1973), censorship theorems (e.g. Friedman
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et al. 1993) and no-hair theorems (e.g. Mayo & Bekenstein 1996). Quantized fields
violate all local point-wise energy conditions (Epstein et al. 1965). In the present
investigation we are, however, concerned with observational studies on macroscopic
scales relevant for cosmology where ρx and px are expected to behave classically.
Cosmic matter in the form of baryons and non-baryons, or relativistic particles like
photons and neutrinos satisfy all standard energy conditions. The two energy condi-
tions discussed below are given in a simplified form (see Wald 1984 and Barceló &
Visser 2001).

The Strong Energy Condition (SEC): ρ + 3p/c2 ≥ 0 and ρ + p/c2 ≥ 0, derived
from the more general condition Rµνvµvν ≥ 0, where Rµν is the Ricci tensor for the
geometry and vµ a timelike vector. The simplified condition is valid for diagonal-
izable energy-momentum tensors which describe all observed fields with non-zero
rest mass and all zero rest mass fields except some special cases (see Hawking &
Ellis 1973). The SEC ensures that gravity is always attractive. Certain singular-
ity theorems (e.g., Hawking & Penrose 1970) relevant for proving the existence of
an initial singularity in the Universe need an attracting gravitational force and thus
assume SEC. Violations of this condition as discussed in Visser (1997) allow phe-
nomena like inflationary processes expected to take place in the very early Universe
or a moderate late-time accelerated cosmic expansion as suggested by the combina-
tion of recent astronomical observations (Fig. 5 left). Likewise, phenomena related
to Λ > 0 and an effective version of Λ whose energy and spatial distribution evolve
with time (quintessence: Ratra & Peebles 1988, Wetterich 1988, Caldwell et al. 1998
etc.) are allowed consequences of the breaking of SEC – but not a prediction. How-
ever, a failure of SEC seems to have no severe consequences because the theoretical
description of the relevant physical processes can still be provided in a canonical
manner. Phenomenologically, violation of SEC means wx < −1/3 for a single en-
ergy component with density ρx > 0. For wx ≥ −1/3, SEC is not violated and we
have a decelerated cosmic expansion.

The Null Energy Condition (NEC): ρ+ p/c2 ≥ 0, derived from the more general
condition Gµνkµkν ≥ 0, where Gµν is the geometry-dependent Einstein tensor and
kµ a null vector (energy-momentum tensors as for SEC). Violations of this condition
are recently studied theoretically in the context of macroscopic traversable worm-
holes (see averaged NEC: Flanagan & Wald 1996, Barceló & Visser 2001) and the
Holographic Principle (Sect. 6). The breaking of this criterion in a finite local re-
gion would have subtle consequences like the possibility for the creation of “time
machines” (e.g. Morris, Thorne & Yurtsever 1988). Violating the energy condition
in the cosmological case is not as dangerous (no threat to causality, no need to in-
volve chronology protection, etc.), since one cannot isolate a chunk of the energy to
power such exotic objects. Nevertheless, violation of NEC on cosmological scales
could excite phenomena like super-acceleration of the cosmic scale factor (Caldwell
2002). Theoretically, violation of NEC would have profound consequences not only
for cosmology because all point-wise energy conditions would be broken. It cannot
be achieved with a canonical Lagrangian and Einstein gravity. Phenomenologically,
violation of NEC means wx < −1 for a single energy component with ρx > 0.
The sort of energy related to this state of a Friedmann-Robertson-Walker (FRW)
spacetime is dubbed phantom energy and is described by super-quintessence models
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Figure 6: Likelihood contours (1 − 3σ) obtained with the Riess et al. (1998) sample of
type-Ia SNe. The luminosities are corrected with the ∆m15 method. The equation of state
parameter wx is assumed to be redshift-independent.

(Caldwell 2002, see also Chiba, Okabe & Yamaguchi 2000). For wx ≥ −1 NEC is
not violated, and is described by quintessence models.

Assuming a spatially flat FRW geometry, Ωm + Ωx = 1, and Ωm ≥ 0 as in-
dicated by the astronomical observations in Fig. 5 (left), the formal conditions for
this two-component cosmic fluid translates into wx ≥ −1/3(1 − Ωm) for SEC, and
wx ≥ −1/(1−Ωm) for NEC (curved lines in Fig. 5 right). These energy conditions,
characterizing the possible phases of a mixture of dark energy and cosmic matter,
thus rely on the precise knowledge of Ωm and wx. Unfortunately, the effects of wx

are not very large. However, a variety of complementary observational approaches
and their combination helps to reduce the measurement errors significantly.

The most direct (geometric) effect of wx is to change cosmological distances.
For example, for a spatially flat universe, comoving distances, a0r =

∫ z

0
cdz′

H(z′) , are
directly related to wx via

[
H(z)
H0

]2

= Ωm(1 + z)3 + (1−Ωm) exp
{

3
∫ z

0

[1 + wx(z′)] d ln(1 + z′)
}

. (7)

A less negative wx increases the Hubble parameter and thus reduces all cosmic dis-
tances. In general, wx must evolve in time. To discuss Eq. (7) in terms of the
resulting parameter degeneracy, let us assume wx(z) = w0 + w1 · z with the ad-
ditional constraint that w0 = −1 implies w1 = 0. For this simple parameteri-
zation the same expansion rate at z is obtained when w0 and w1 are related by
w1 = − ln(1+z)

z−ln(1+z) (1 + w0). The parameter degeneracy between w0 and w1 is a
generic feature and can be seen in many proposed observational tests. Fortunately,
its slope depends on z, so that the degeneracy can be broken with independent obser-
vations covering a large redshift range. Current observations have not the sensitivity
to measure w0 and w1 separately so that basically all published measurements of
the equation of state of the DE are on w0 assuming w1 = 0. The danger with this



92 Peter Schuecker

Figure 7: Matter power spectrum (left panel) and its evolution (right panel) for different
redshift-independent equations of state −1 ≤ wx < 0 of the DE. The lower curve in each
panel is for wx = −1 and increases in amplitude with wx.

assumption is, however, that if the true w1 would strongly deviate from zero then the
estimated w0 would be biased correspondingly (Maor et al. 2002). In addition, even
when an explicit redshift dependency of wx could be neglected, some parameter de-
generacy between Ωm and wx remains as suggested by Eq. (7) (see Fig. 6 obtained
with the type-Ia SNe).

Structure growth via gravitational instability provides a further probe of wx. DE,
not in form of a cosmological constant or vacuum energy density, is inhomogenously
distributed - a smoothly distributed, time-varying component is unphysical because
it would not react to local inhomogeneities of the other cosmic fluid and would
thus violate the equivalence principle. An evolving scalar field with wx < 0 (e.g.
quintessence) automatically satisfies these conditions (Caldwell, Dave & Steinhardt
1998a). The field is so light that it behaves relativistically on small scales and non-
relativistically on large scales. The field may develop density perturbations on Gpc
scales where sound speeds c2

s < 0, but does not clump on scales smaller than galaxy
clusters. Generally, perturbations come in either linear or nonlinear form depending
on whether the density contrast, δ = (ρ/ρ̄) − 1, is smaller or larger than one.

In the linear regime, and when DE is modeled as a dynamical scalar field, the
rate of growth of linear density perturbations in the CDM is damped by the Hub-
ble parameter, δ′′cdm + aHδ′cdm = 4πGa2δρcdm (a means scale factor and prime
derivative with respect to conformal time). This evolution equation can be solved ap-

proximately by d ln δcdm
d ln a ≈

[
1 + ρx(a)

ρcdm(a)

]−0.6

(Caldwell, Dave & Steinhardt 1998b),

provided that ρx < ρr at radiation-matter equality. It is seen that ρx(a) and thus
a more positive wx delays structure growth. To reach the same fluctuations in the
CDM field, structures must have formed at higher z compared to the standard CDM
model. For a redshift-independent wx, transfer and growth functions can be found
in Ma et al. (1999). The effects of a constant wx on P (k) are shown in Fig. 7. The
sensitivity of CMB anisotropies to wx is limited to the integrated Sachs-Wolfe effect
because Ωx dominates only at late z (Eq. 7). Spergel et al. (2003) showed that the
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Figure 8: Left: Virial density in units of the critical matter density for a flat universe as a
function of Ωm and wx. The wx values range from −1 (lower curve) to zero (upper curve).
Right: Likelihood contours (1-3σ) obtained from nearby cluster counts (REFLEX: Schuecker
et al. 2003b) assuming a constant wx and marginalized over 0.5 < σ8 < 1.

WMAP data could equally well fit with Ωm = 0.47, h = 0.57, and wx = −0.5 once
wx is regarded as a free (constant) parameter.

In the nonlinear regime, the effects of DE are not very large. For the cosmo-
logical constant, Lahav et al. (1991) used the theory of peak statistics in Gaussian
random fields and linear gravitational-instability theory in the linear regime and the
spherical infall model to evolve the profiles to the present epoch. They found that
the local dynamics around a cluster at z = 0 does not carry much information about
Λ. However, DM haloes have core densities correlating with their formation epoch.
Therefore, when wx delays structure growth, then DM haloes are formed at higher z
with higher core densities and should thus appear for fixed mass and redshift more
concentrated in wx > −1 models compared to Λ. This is reflected in the virial
densities of collapsed objects in units of the critical density shown in Fig. 8 (left).
The first semi-analytic computations of a spherical collapse in a fluid with DE with
−1 ≤ wx < 0 were performed by Wang & Steinhardt (1998). Schuecker et al.
(2003b) enlarged the range to −5 < wx < 0, whereas Mota & van de Bruck (2004)
discussed the spherical collapse for specific potentials of scalar fields. For recent
simulations see Klypin et al. (2003) and Bartelmann et al. (2004).

These arguments have to be combined with the general discussion of Eq. (1) to
understand the sensitivity of cluster counts on wx. Keeping the present-day cluster
abundance and lower mass limit Mmin in Eq. (1) fixed, the dominant effect of wx

comes from structure growth and volume (Haiman, Mohr & Holder 2001). For a
larger wx, the DE field delays structure growth so that the number of distant clusters
increases. However, a large wx yields a small comoving count volume for the clusters
which counteracts the growth effect. The compensation works mainly at small z and
leads to a comparatively small sensitivity of cluster counts at z < 0.5 on wx. For
z > 0.5, the effect of a delayed structure growth starts to dominate and the number of
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high-z clusters increases with wx. However, the realistic case is when a redshift and
cosmology-dependent lower mass limit is included. In this case, it could be shown
that at high z, the wx-dependence of the redshift distribution is mainly caused by
the wx-dependence of the lower mass limit in the sense that a larger wx decreases
distances and therefore increases the number of high-z clusters, whereas at small
redshifts no strong dependency beyond the standard Ωm-σ8 degeneracy remains. The
inclusion of a z-dependent mass limit does only slightly damp the sensitivity on Ωm.

This high-z behaviour of the number of clusters is very important for future
planned cluster surveys (e.g. DUO Griffiths et al. 2004) where in the wide (north-
ern) survey about 8 000 clusters will be detected over 10 000 square degrees on top
of the SDSS cap up to z = 1, and where in the deep (southern) survey about 1 800
clusters will be detected over 176 square degrees up to z = 2 (if they exists at such
high redshifts). REFLEX has most clusters below z = 0.3. For a constant wx the
likelihood contours are shown in Fig. 8 (right) as a function of Ωm (Schuecker et al.
2003b). The effects of yet unknown possible systematic errors are included by using
a very large range of σ8 priors (0.5 < σ8 < 1.0). As expected, the wx dependence
is very weak.

The past examples (Fig. 6 and Fig. 8 right) have shown that presently neither SNe
nor galaxy clusters alone give an accurate estimate of the redshift-independent part
of wx. This is also true for CMB anisotropies. However, the resulting likelihood
contours of SNe and galaxy clusters appear almost orthogonal to each other in the
high-wx range. Their combination thus gives a quite strong constraint on both wx and
Ωm (Fig. 9 left). This is a typical example of cosmic complementarity which stems
from the fact that SNe probe the homogeneous Universe whereas galaxy clusters test
the inhomogeneous Universe as well. The final result of the combination of different
SNe samples and REFLEX clusters yields the 1σ constraints wX = −0.95 ± 0.32
and Ωm = 0.29 ± 0.10 (Schuecker et al. 2003b). Averaging all results obtained
with REFLEX and various SN-samples yields wx = −1.00+0.18

−0.25 (Fig. 9 left). The
figure shows that the measurements suggest a cosmic fluid that violates SEC and
fulfills NEC. In fact, the measurements are quite consistent with the cosmological
constant and leave not much room for any exotic types of DE. The violation of the
SEC gives a further argument that we live in a Universe in a phase of accelerated
cosmic expansion.

Ettori, Tozzi & Rosati (2003) used the baryonic gas mass fraction of clusters in
the range 0.72 ≤ z ≤ 1.27 and obtained wx ≤ −0.49. The combination with SN
data yields wx < −0.89, erroneously referring to the constraint wx ≥ −1. Henry
(2004) used the X-ray temperature function and found wx = −0.42 ± 0.21, assum-
ing wx ≥ −1.0. In a preliminary analysis, Sereno & Longo (2004) used angular
diameter distance ratios of lensed galaxies in rich clusters, and shape parameters of
surface brightness distributions and gas temperatures from X-ray data, and obtained
wx = −0.83 ± 0.14, assuming wx ≥ −1.0. Rapetti, Allen & Weller (2004) com-
bined cluster X-ray gas mass fractions with WMAP data and obtained the constraints
wx = −1.05 ± 0.11. A formal average of the most accurate und unconstrained wx

measurements using galaxy clusters (Schuecker et al. 2003b, Rapetti et al. 2004)
gives

wx = −1.00± 0.05 . (8)
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Lima, Cunha & Alcaniz (2003) give a summary of the results of the wx-Ωm tests
obtained with various methods, all assuming a redshift-independent wx. A clear
trend is seen that wx > −0.5 is ruled out by basically all observations. The large
degeneracy seen in Fig. 6 (left) towards wx < −1 translates into a less well-defined
lower bound. Hannestad & Mörtsell (2002) found wx > −2.7 by the combination
of CMB, SNe and large-scale structure data.

Melchiorri et al. (2003) combined seven CMB experiments including WMAP
with the Hubble parameter measurements from the Hubble Space Telescope and lu-
minosity measurements of type-Ia SNe, and found the 95% confidence range−1.45 <
wx < −0.74. If they include also 2dF data on the large-scale distribution of galaxies
they found −1.38 < wx < −0.82. More recent measurements support the tendency
that wx is close to the value expected for a cosmological constant as found by the
combination of REFLEX and SN data. Spergel et al. (2003) used a variety of dif-
ferent combinations between WMAP and galaxy data and obtained the 1σ corridor
wX = −0.98 ± 0.12. Riess et al. (2004) combined data from distant type-Ia SNe
with CMB and large-scale structure data, and found wx = −1.02+0.13

−0.19. Their results
are also inconsistent with a rapid evolution of the DE. Combining Ly-α forest and
bias analysis of the SDSS with previous constraints from SDSS galaxy clustering,
the latest SN and WMAP data, Seljak et al. (2004) obtained wx = −0.98+0.10

−0.12 at
z = 0.3 (they also obtained σ8 = 0.90 ± 0.03). A combination of the wx measure-
ments of REFLEX, Rapetti et al. (2004), Spergel et al. (2003), Riess et al. (2004),
and Seljak et al. (2004) yields wx = −0.998 ± 0.038. Independent from this more
or less subjective summary, it is still save to conclude that all recent measurements
are consistent with a cosmological constant, and that the most precise estimates sug-
gest that wx is very close to −1. This points towards a model where DE behaves
very similar to a cosmological constant, i.e., that the time-dependency of the DE
cannot be very large. In fact, Seljak et al. have also tested wx at z = 1, and found
wx(z = 1) = −1.03+0.21

−0.28 and thus no significant change with z.
Cluster abundance measurements have not yet reached the depth to be very sensi-

tive to the normalized cosmological constant ΩΛ or Ωx. The most reliable estimates
todate come from the X-ray gas mass fraction. Vikhlinin et al. (2003) used the cluster
baryon mass as a proxy for the total mass, thereby avoiding the large uncertainties on
the M/T or M/L relations, yielding with 17 clusters with z ≈ 0.5 the degeneracy rela-
tion Ωm +0.23ΩΛ = 0.41±0.10. For Ωm = 0.3, this would give ΩΛ = 0.48±0.12.
Allen et al. (2002) obtained with the X-ray gas mass fraction in combination with
the other measurements described above the constraint ΩΛ = 0.95+0.48

−0.72. Ettori et al.
(2003) obtained ΩΛ = 0.94 ± 0.30, and Rapetti et al. (2004) ΩΛ = 0.70 ± 0.03.
Combining lensing and X-ray data, Sereno & Longo (2004) obtained ΩΛ = 1.1±0.2.
The formal average and 1σ standard deviation of these measurements is

ΩΛ = 0.83 ± 0.24 . (9)

The last effect of DE and thus wx discussed here is interesting by its own, but also
offers a possibility for cross-checks of wx measurements. The effect is related to a
possible non-gravitational interaction between DE and ordinary matter (e.g. Amen-
dola 2000). We showed above (e.g., Eq. 8) that the most obvious candidate for DE
is presently the cosmological constant with all its catastrophic problems (Sect. 6).
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Figure 9: Left: Combination of wx measurements based various SN samples and the RE-
FLEX sample assuming a redshift-independent wx. The likelihood contours (1 − 3σ) are
centred around wx = −1 which corresponds to the cosmological constant (vertical line). The
two curved lines correspond to the SEC (upper line) and the NEC (lower line). The curved line
in the right part of the diagram corresponds to a specific holographic DE model of Li (2004).
Right: Normalization parameter of the matter power spectrum σ8 compared to the coupling
strength β where β = 0 means no coupling between DE and DM. The inner region marked by
the dashed horizontal lines (GCLST) marks observational constraints from the scatter of all
σ8 estimates obtained from galaxy clusters during the past 2 years. The broader range marked
by the continuous horizontal lines (ALL) is a plausible interval which takes into account also
σ8 measurements from other observations.

However, a very small redshift-dependency of the DE density cannot be ruled out.
Based on this possible residual effect, a further explanation would be a light scalar
(quintessential) field φ where its potential can drive the observed accelerated expan-
sion similar as in the de-Sitter phase of inflationary scenarios. In general, φ interacts
beyond gravity to baryons and DM with a strength similar to gravity. However, some
(unkown) symmetry could signficantly reduce the interaction (Carroll 1998) – other-
wise it would have already been detected – so that some coupling could remain. The
following discussion is restricted to a possible interaction between DE and DM.

The general covariance of the energy momentum tensor requires the sum of DM
(m) and DE (φ) to be locally conserved so that we can allow for a coupling of the
two fluids, e.g., in the simple linear form,

T µ
ν(φ);µ = C(β)T(m)φ;ν ,

T µ
ν(m);µ = −C(β)T(m)φ;ν , (10)

with the dimensionless coupling constant β in C(β) =
√

16πG
3c4 β, but more compli-

cated choices are, however, possible. Observational constraints on the strength of a
nonminimal coupling β between φ and DM are |β| < 1 (Damour et al. 1990). For
a given potential V (φ), the corresponding equation of motion of φ can be solved.
Amendola (2000) discussed exponential potentials which yield a present accelerat-
ing phase. A generic result is a saddle-point phase between z = 104 and z = 1
where the normalized energy density related to the scalar field, Ωφ, is significantly
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higher compared to noncoupling models. The saddle-point phase thus leads to a fur-
ther suppression of structure growth and thus to smaller σ8 (when the models are
normalized with the CMB) compared to noninteracting quintessence models (Fig. 9
right). The present observations appear quite stringent. The X-ray cluster constraint
σ8 = 0.76 ± 0.10 (Eq. 3) obtained in Sect. 4 suggests a clear detection of a nonmin-
imal coupling between DE and DM:

β = 0.10 ± 0.01 . (11)

This would provide an argument that DE cannot be the cosmological constant be-
cause Λ cannot couple non-gravitationally to any type of matter. In this case, the
quite narrow experimental corridor found for wx (Eq. 8) would be responsible for
the nonminimal coupling. However, a possibly underestimated σ8 by galaxy clus-
ters, and thus no nonminimal couplings and a DE in form of a cosmological constant
seem to provide a more plausible alternative (see Sect. 7).

6 The Cosmological Constant Problem

Recent measurements of the equation of state wx of the DE do not leave much room
for any exotic type of DE (Eq. 8 in Sect. 5). In this section we take the most plausible
assumption that the observed accelerated cosmic expansion is driven by Einstein’s
cosmological constant more serious. In this case, we are, however, confronted with
the long-standing cosmological constant problem (e.g., Weinberg 1989). To some
extent also DE models based on scalar fields suffer on this problem because they have
to find a physical mechanism (symmetry) which makes the value of Λ negligible. To
illustrate the problem, separate the effectively observed DE density as usual into a
gravitational and non-gravitational part,

ρeff
Λ = ρGRT

Λ + ρVAC
Λ = 10−26 kg m−3 , (12)

for ΩΛ = 0.7. The non-gravitational part represents the physical vacuum. A free
scalar field offers a convinient way to get an estimate of a plausible vacuum en-
ergy density. Interpreting this field as a physical operator and thus constraining it to
Heisenberg’s uncertainty relations, quantize the field in the canonical manner. The
quantized field behaves like an infinite number of free harmonic oscillators. The
sum of their zero particle (vacuum) states, up to the Planck energy, corresponding to
a cutoff in physical (not comoving) wavenumber, is

ρVAC
Λ =

�

c

∫ Ep/�c

0

4πk2dk

(2π)3
1
2

√
k2 + (mc/�)2 ≈ 10+93 kg m−3 , (13)

for m = 0. The cosmological constant problem is the extra-ordinary fine-tuning
which is necessary to combine the effectively measured DE density in Eq. (12) with
the physical vacuum (13). This simple (though quite naive) estimate immediately
shows that something fundamentally has gone wrong with the estimation of the
physical vacuum in Eq. (13). An obvious answer is related to the fact that for the
estimation of the physical vacuum, gravitational effects are completely ignored. One
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could think of a quantum gravity with strings. However, present versions of such
theories seem to provide only arguments for a vanishing or a negative cosmological
constant (Witten 2000, but see below).

A hint how inclusion of gravity could effectively work in Eq. (13), comes from
black hole thermodynamics (Bekenstein 1973, Hawking 1976). Analyzing quan-
tized particle fields in curved but not quantized spacetimes, it became clear that the
information necessary to fully describe the physics inside a certain region and char-
acterized by its entropy, increases with the surface of the region. This is in clear
conflict to standard non-gravitational theories where entropy as an extensive vari-
able always increases with volume. Non-gravitational theories would thus vastly
overcount the amount of entropy and thus the number of modes and degrees of free-
dom when quantum effects of gravity become important. Later studies within a
string theory context could verify a microscopic origin of the black hole entropy
bound (Strominger & Vafa 1996). Bousso (2002) generalizes the prescription how
entropy has to be determined even on cosmological scales, leading to the Covariant
Entropy Bound. ’t Hooft (1993) and Susskind (1995) elevated the entropy bound as
the Holographic Principle to a new fundamental hypothesis of physics.

A simple intuitive physical mechanism for this holographic reduction of degrees
of freedom is related to the idea that each quantum mode in Eq. (13) should carry a
certain amount of gravitating energy. If the modes were packed dense enough, they
would immediately collapse to form a black hole. The reduction of the degrees of
freedom comes from the ignorance of these collapsed states. Later studies of Cohen,
Kaplan & Nelson (1999), Thomas (2002), and Horvat (2004) made the exclusion
of states inside their Schwarzschild radii more explict which further strengthen the
entropy bound so that a new estimate of the physical vacuum is

ρHOL
Λ =

c2

8πG

1
R2

EH

≈ 3 · 10−27 kg m−3 , (14)

where REH is the present event horizon of the Universe. This is, however, not a
solution of the cosmological constant problem because gravity and the exclusion
of microscopic black hole states were put in by hand and not in a self-consistent
manner by a theory of quantum gravity. Nevertheless, the similarity of Eqs. (12) and
(14) might be taken as a hint that gravitational hologpraphy could be relevant to find
a more complete theory of physics.

A method to test for consistency of present observations with gravitational holog-
raphy, is closely related to the fact that gravitational holography as tested with the
Covariant Entropy Bound on cosmological scales is based on the validity of the Null
Energy Condition (NEC). However, in contrast to the NEC as discussed in Sec. 5 for
the total cosmic fluid, Kaloper & Linde (1999) could show that for the Covariance
Entropy Bound each individual component of the cosmic substratum must obey

−1 ≤ wi ≤ +1 . (15)

The problematic component is the equation of state of the dark energy. The observed
values summarized in Sect. 5 suggest wx = −1.00 ± 0.05 which is consistent with
the bound (15). One can take this as the first consistency test of probably the most
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important assumption of the Holographic Principle on macroscopic scales. However,
a direct measurement of cosmological entropy on light sheets as defined in Bousso
(2002) is still missing.

Li (2004) recently combined holographic ideas with DE to ‘solve’ the cosmolog-
ical constant problem. Applying the stronger entropy bound as suggested by Thomas
(1998) and Cohen et al. (1999), and using the cosmic event horizon as a character-
istic scale of the Universe, accelerating solutions of the cosmic scale factor at low z
could be found together with relations between the density of cosmic matter and wx

as shown in Fig. 9 (left). This model of holographic DE appears to be quite consis-
tent with present observations and was in fact used in Eq. (14) to estimate the density
of the physical vacuum.

’t Hooft (1993) and Susskind (1995) give arguments suggesting that M-theory
should satisfy the Holographic Principle. Horava (1999) in his ‘conservative’ ap-
proach to M-theory, defined by specific gauge symmetries and invariance under
spacetime diffeomorphisms and parity, could show that the entropy bound and thus
holography emerges quite naturally. Therefore, any astronomical test supporting
gravitational holography more directly or some of its basic assumptions like the NEC
as described above should give important hints towards the development of a more
complete theory of physics.

There is a class of models based on higher dimensions which follow the Holo-
graphic Principle. Brane-worlds emerging from the model of Horava & Witten
(1996a,b) are phenomenological realizations of M-theory ideas. Recent theoreti-
cal investigations concentrate on the Randall & Sundrum (1996a,b) models where
gravity is used in an elegant manner to compactify the extra dimension. Some of
these models also follow the Holographic Principle. Here, matter and radiation of
the visible Universe are located on a (1 + 3)-dimensional brane. Expressed in a sim-
plified manner, non-gravitational forces, described by open strings, are attached with
their endpoints on branes. Gravity, described by closed strings, can propagate also
into the (1 + 4)-dimensional bulk and thus ‘dilutes’ differently than Newton or Ein-
stein gravity. Table-top experiments of classical gravity (and BBN) confine the size
of an extra dimension to < 0.16 mm (Hoyle et al. 2004). Einstein gravity formu-
lated in a five dimensional spacetime and combined with a five-dimensional cosmic
line element carrying the symmetries of the assumed brane-world, can yield FL-like
solutions with the well-known phenomenology at low z (Binetruy et al. 2000).

The analysis of perturbations in brane-world scenarios is not yet fully under-
stood (Maartens 2004). Difficulties arise when perturbations created on the brane
propagate into the bulk and react back onto the brane. Only on large scales are the
computations under control because here the effects of the backreaction are small and
can be neglected. It is thus not yet clear, whether the resulting effects on the power
spectrum described below are mere reflections of such approximations or generic
features of higher dimensions.

Brax et al. (2003) and Rhodes et al. (2003) discussed the effects of extra dimen-
sions on CMB anisotropies and large scale structure formation. Models with extra
dimensions can at low energies be described as scalar-tensor theories where the light
scalar fields (moduli fields) couple to ordinary matter in a manner depending on the
details of the higher dimensional theory. An illustration of the expected effects on
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Figure 10: Predicted cluster power spectra based on matter power spectra of Rhodes et al.
(2003). The effect of the extra-dimension decreases the P (k) amplitudes at large scales. The
error bars are typical for a DUO-like X-ray cluster survey. In order to show the differences
more clearly, power spectra for each extra dimension are slidely shifted relative to each other
along the comoving k axis.

the cluster power spectrum is given in Fig. 10. The error bars are computed with
cluster samples selected from the Hubble Volume Simulation under the conditions
of the DUO wide survey (P. Schuecker, in prep.). It is seen that P (k) gets flatter on
scales around 300 h−1 Mpc with increasing size of the extra dimension. A careful
statistical analysis shows that more than 30 000 galaxy clusters are needed to clearly
detect the presence of an extra dimension on scales below 0.16 mm.

7 Summary and conclusions

X-ray galaxy clusters give, in combination with other measurements, the observa-
tional constraints and their 1σ errors on the matter density Ωm = 0.31 ± 0.03, the
normalized cosmological constant ΩΛ = 0.83±0.23, the normalization of the matter
power spectrum σ8 = 0.76±0.10, the neutrino energy density Ων = 0.006±0.003,
the equation of state of the DE wx = −1.00 ± 0.05, and the linear interaction
β = 0.10 ± 0.01 between DE and DM. These estimates suggest a spatially flat
universe with Ωtot = Ωm + ΩΛ = 1.14 ± 0.24, as assumed in many cosmological
tests based on galaxy clusters.

They do, however, not provide an overall consistent physical interpretation. The
problem is related to the low σ8 which leads to an overestimate of the neutrino mass
compared to laboratory experiments and to an interaction between DE and DM. Such
a high interaction is not consistent with a DE with wx = −1.00 ± 0.05 because
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the latter indicates that DE behaves quite similar to a cosmological constant which
cannot exchange energy beyond gravity.

A more convincing explanation is that σ8 = 0.76 should be regarded as a lower
limit so that DE would be the cosmological constant without any nonminimal cou-
plings. Systematic underestimates of σ8 by 10-20% are not unexpected from recent
simulations (e.g., Randall et al. 2002, Rasia et al. 2004). Present data do not al-
low any definite conclusion, especially in the light of the partially obscured effects
of non-gravitational processes in galaxy clusters and because of our ignorance of
a possible time-dependency of wx. However, the inclusion of further parameters
obviously improves our abilities for consistency checks.

Energy conditions form the bases of many phenomena related to gravity and
holography. M-theory should also come holographic, as well as brane-world gravity
as a phenomenological realization of M-theory ideas. Tests of the resulting cosmolo-
gies will in the end confront alternative theories of quantum gravity. Observational
tests on cosmological scales as illustrated by the effects of an extra-dimension on the
cluster power spectrum probably need the ‘ultimate’ cluster survey, i.e. a census of
possibly all 106 rich galaxy clusters which might exist down to redshifts of z = 2 in
the visible Universe.
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