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Abstract

Several experiments are presently in preparation which intend to repro-
duce a homogeneous dynamo on a laboratory scale. This paper reviews
the theoretical models on which some of these erperiments are based.

1 Introduction

The dynamo effect is commonly invoked in astrophysics and the planetary
sciences in order to explain the generation of large scale magnetic fields. De-
spite the apparent omnipresence of this effect in the universe, no experimental
demonstration of a homogeneous dynamo reproducing at least qualitatively
essential features of natural dynamos has been successful up to now. It is
indeed a major technological challenge to build a homogeneous dynamo on a
laboratory scale. A growing number of groups is presently engaged in setting
up dynamo experiments. The sudden surge in experimental activities has been
helped by the outphasing of fast nuclear breeder technology in most industri-
alized countries so that the know how and the hardware necessary for handling
large volumes of liquid sodium become available for other purposes. Technical
aspects of dynamo experiments are covered in a recent review (Tilgner 2000).
The present contribution focuses on the theoretical models underlying those
experiments whose actual realizations are closest to completion at the time of
writing.



Figure 1: The disc dynamo

2 The disc dynamo and general concepts

The simplest dynamo (i.e. the simplest engine converting mechanical into
magnetic energy) is the disc dynamo depicted in figure 1. The entire struc-
ture is made of conducting material. A disc rotates at angular velocity w
about an axis, and a wire electrically connected by brushes to the disc and
the axis allows current to flow in a closed loop from the rim of the disc to
the axis and back to the disc. If an initial seed field of roughly dipolar struc-
ture permeates the rotating disc as indicated in the figure, an electromotive
force v x B (where v is the local velocity of the disc) is directed everywhere
towards the rim of the disc and drives a current through the wire. The wire
is shaped such that the current flowing in it induces a magnetic field which
superposes constructively with the initial seed field. In this qualitative pic-
ture, the strengthened magnetic field drives a larger current which in turn
leads to a yet stronger magnetic field, etc. The magnetic field grows without
end if the disc rotates at a prescribed angular velocity. In a model closer to



reality where the axis might be connected to a motor exerting a finite torque,
the rotation rate of the axis actually decreases when the magnetic field grows
because the electromagnetic force j x B (where j is the local current density
in the disc) opposes the rotation of the disc.

The disc dynamo exhibits the essential features common to all dynamos.
The dynamo effect needs a seed field to start. Zero magnetic field is always
a solution, albeit possibly an unstable one. Whether it is unstable or not
depends on the structure and the vigor of the motion in the conductor: if the
rotation rate of the disc is too slow, ohmic dissipation depletes the magnetic
field too quickly and overwhelms the generation mechanism described above.
In addition, one obtains another consistent picture after inverting the arrows
for the magnetic field and the current in figure 1. Indeed, if a motion supports
a magnetic field B(r), it is also able to generate —B(r). The initial conditions
decide the polarity. Finally, if the motion of the conductor is prescribed (the
so called “kinematic dynamo” problem), the magnetic field decays or grows
indefinitely. If on the contrary a driving force is prescribed, a dynamo field
saturates at a level such that a balance is struck between the Lorentz force,
the driving force and friction.

The disc dynamo relies for its operation on the shape of the wire. If it were
plunged into a bath of liquid metal, disc and axis would be short circuited
and no magnetic field could be generated. Since planetary cores and stellar
interiors are essentially homogeneous masses of fluid conductor, they appear
at first sight as very unlikely places for a dynamo to operate. A “homogeneous
dynamo” is a fluid flow which generates a magnetic field despite the electric
current being free to flow within a simply connected (for example spherical)
volume. The current experimental aim is to construct such homogeneous
dynamos. Inhomogeneous dynamos exist since long and are found in any car
or on bicycles.

Dynamos operating in liquid metals moving at velocities v(r) small com-
pared with the speed of light are well described by the induction equation of
magnetohydrodynamics

%B+V><(B><v)zw23, V-B=0 (1)
where X is a material constant (the magnetic diffusivity) assumed constant in
(1) throughout the conductor. (1) describes the kinematic dynamo problem.
Additional equations (e.g. the Navier-Stokes equation) are necessary to de-
termine how v reacts to a growing magnetic field. Since the present challenge
is to generate magnetic fields at all, we will restrict our attention to (1). The
following sections describe solutions of (1) which have motivated experiments
under construction.

3 The Riga experiment

The first attempt at building a homogeneous dynamo with liquid sodium has
been undertaken by the Riga group (Gailitis et al. 1987, Gailitis 1990). The



first experiment has failed to produce a dynamo, but an improved apparatus
based on the same theoretical model is being set up. The experiment con-
sists of three coaxial pipes. In the inner pipe sodium is flowing along helical
streamlines (at least on average, the flow being turbulent). In the middle
pipe, the fluid returns from the exit of the inner pipe to its entrance. The
outer pipe contains sodium at rest. This configuration is inspired by a model
introduced by Ponomarenko (1973) who studied a fluid moving with velocity
v =wrg +v,2 in a cylindrical region r < ry (in cylindrical polar coordinates
r,z,¢) and v = 0 for r > 1o (fig. 2a). The differences between the model and
the experiment are that the pipes have finite length, the conductor at rest
in the experiment does not extend to infinity radially, and there is no return
flow in the model. Closer approximations to the experiment than shown in
fig. 2 a have of course been investigated, but the basic field growth mechanism
is already contained in the Ponomarenko model.

The induction equation (1) with the velocity field under consideration
can be solved by the ansatz B(r,t) = b(r)e’te?*#e"™?. A growth rate o
with positive real part indicates a working dynamo. The magnetic fields
excited most easily have an azimuthal wavenumber m of 1. Since the z-
dependence is assumed periodic with wavenumber k, there only remains the
radial dependence to be determined. In each of the regions r < rg and r > ry,
the equations for the components of b(r) are solved by linear combinations
of Bessel functions I and K. The partial differential equation (1) is then
reduced to an algebraic equation for a few coefficients. Only at this point is
it necessary to resort to numerical computation in order to find combinations
of w, v,, rg, A and k such that o has a positive real part. Such combinations
do exist.

It being established that the Ponomarenko flow is a dynamo for a suitable
choice of parameters, one still would like to have a qualitative picture of how
it works similar to that presented for the disc dynamo above. By a suitable
choice of frame of reference, the velocity field in either of the regions r < rg
or r > ro may be transformed to zero. It follows that the magnetic field in
both regions is just diffusing ((1) with v = 0 is a diffusion equation for B).
The entire generation mechanism must therefore be concentrated at the inter-
face between the two regions. It is now useful to invoke Alfvén’s “frozen flux
theorem” which states that in a perfect conductor, magnetic field lines are
carried along by the fluid. In a real fluid, a magnetic field line which connects
two fluid particles will not do so forever but the deformation of the field lines
due to fluid motion is still reminiscent of the frozen flux dynamics. Coming
back to the Ponomarenko dynamo, assume that the radial component B, is
different from zero at the interface r = ry so that magnetic field lines are
crossing from one region to the other. Because of the strong shear, the field
lines get aligned with the cylindrical surface r = ro. Elongation of field lines
leads to amplification of the ¢ and z components of B. The shear may there-
fore lead to strong B, and B, from a weak B,, but how is B, replenished?
Interestingly enough, this happens by pure diffusion. The radial component
of the induction equation multiplied by B, and integrated over the periodicity



volume V limited by 0 < z < 27/k, 0 < ¢ <27, 0 < r < oo leads to
4 3B2dAV = =X\ [(VB,)?dV =\ [ 5B2dV—\[ 2B,0,B, dV.

The first two terms on the right hand side are negative. The third term
also arises from the diffusion term but it may be positive. Therefore, dynamo
fields in the Ponomarenko model have a radial component of B fed through
diffusion by the p-component which it is amplified through shearing motion at
r = 9. The diffusive coupling between B, and B, is due to the curvature of
the cylindrical surface r = ry. This picture is supported by the more general
analysis of Ruzmaikin and Sokoloff (1980) and the asymptotics by Roberts
(1987) and Gilbert (1988).
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Figure 2a: The Ponomarenko dynamo. Within a cylinder of radius ro, the conduc-
tor is rotating like a solid body at angular velocity w and translating along the axis
as indicated by the +-sign. The conductor is at rest for r > rg. b: Nine cells of
an infinite periodic two dimensional dynamo introduced by G.O. Roberts. Just as
in a), the signs indicate the direction of the translation (the out of plane velocity
component in the figure) and the arrows show the sense of the swirling motion, i.e.
the in plane component.

4 The Karlsruhe experiment

The Karlsruhe experiment emphasizes the concept of scale separation: motion
on a small spatial scale occurs within a much larger volume of fluid. Motion
on many different scales is found in turbulent flows, too. Convection in rapidly
rotating fluids (e.g. planetary interiors) also occurs in columns aligned with
the rotation axis, where the radius of each column is much less than the
radius of the fluid boundaries and where the motion within columns is roughly
helical. The flow realized in the Karlsruhe experiment reproduces some of
these features.



The Karlsruhe experiment represents a finite excerpt of a model intro-
duced by G.O. Roberts (1972) (fig. 2b), who considered an array of right
handed helical swirls periodic in the z,y-plane. The induction equation for
this velocity field needs to be solved numerically, but there is a limit for which
a useful analytic approximation is known. Numerical computations show that
the periodic flow in fig. 2b preferentially generates a magnetic field which has
the same periodicity as the velocity field (Tilgner and Busse 1995). Such a
magnetic field includes a component which is independent of x and y and
which is referred to as the “large scale” magnetic field. In a realization of
finite extent of fig. 2b, this component would also vary in z and y due to
boundary conditions, but more slowly than the rest of the field which varies
on the length scale of the periodicity length of the flow. Hence the designa-
tion as “large scale field” and its distinction from “small scale” or “fluctuating”
components. If the magnetic Reynolds number on the scale of a periodicity
cell is small, the large scale field is much larger than the fluctuating part.
The limit of small magnetic Reynolds number can be exploited using different
mathematical formalisms, either in the Fourier domain (G. O. Roberts 1972,
Gubbins 1974), by “smoothing” (Ghil and Childress 1987) or by averaging
(Busse 1992, Busse et al. 1998, Rédler et al. 1998). The result is that if one
decomposes the magnetic field B into a large scale field B and a small scale
field b as B = B + b, one obtains (at lowest order) an equation for B alone:

0:B+V x E=)\V’B
where the large scale electromotive force E is given by
E =aB,

a being a tensor. The generation of a large scale E by a large scale B is known
as the “a-effect”. The expression for a subsumes the dynamics on the small
scales. Qualitatively, the dynamo works as follows: Starting from a suitable
large scale seed field, a current is generated through the a-effect which itself
is source for a large scale field which superposes constructively with the initial
seed field, thus completing again a dynamo cycle akin to those identified for
the disc and Ponomarenko dynamos. For a detailed presentation, see Busse
et al. (1998).

In the Karlsruhe experiment, the Reynolds number on the scale of a single
eddy at the onset of dynamo action is expected to be in the range 8-10, which
is not small. Quantitative modeling thus requires either retaining many terms
in an expansion in the magnetic Reynolds number (Radler et al. 1998) or direct
simulation of the full induction equation (Tilgner 1997).
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Figure 3: Two motions studied numerically by Dudley and James. The flows are ax-

isymmetric about the vertical axis indicated by a dashed line. In order to emphasize
the relationship with the other dynamos, meridional (in plane) and azimuthal (out
of plane) components of the velocity field are indicated in the same way as in figure 2.

5 Models of Dudley and James

At least three groups are in the process of building experiments which repro-
duce flows studied numerically by Dudley and James (1989) (for a review of
the experiments see Tilgner 2000). These are axisymmetric flows in a sphere
consisting of one or two eddies (fig. 3a,b). There is as yet no simple un-
derstanding of the dynamo mechanism in these flows and their investigation
has been a purely numerical matter so far. However, they can probably be
linked to the dynamos of the previous sections. The circulation of fig. 3a for
instance is a Ponomaranko dynamo whose cylindrical axis has been wrapped
azimuthally around the vertical symmetry axis of figure 3. Alternatively, this
flow is topologically identical to the one in the Riga experiment with the pipes
aligned vertically. One can also imagine a continuation of the sequence of fig-
ures 3a and b leading to an axisymmetric flow consisting of many cells. Such
a flow is not practical for an experiment, but it becomes again amenable to
mean field analysis (Gubbins 1973). Analogies between the magnetic fields
generated by the Dudley and James models and other dynamos have appar-
ently not been explored yet.
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The experiments due to run in the near future are based on a variety of models
and on different excitation mechanisms for the magnetic field. The non linear
effects leading to the saturation of magnetic field growth are expected to be
equally varied. Issues of field saturation are best settled by the experiments
themselves. At the end of the year 1999 both the Riga and the Karlsruhe
groups claimed to have observed a self-exited magnetic dynamo field in their
respective apparatus.
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