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1 Introduction

Galaxies are not randomly distributed in the sky. Their positions are correlated,
and there exist areas in the sky where the galaxy density is noticeably higher or
lower than average. There are groups consisting of a few galaxies, and there exist
clusters of galazies in which some hundred up to a thousand galaxies appear very
close together.

Zwicky noted in 1933 that the galaxies in the Virgo cluster and other rich
clusters move so fast that the clusters required about 10 to 100 times more mass
to keep the galaxies bound than could be accounted for by the luminous galaxies
themselves. This was the earliest indication that there is invisible mass, or dark
matter, in at least some objects in the universe.

Several thousands of galaxy clusters are known today. Abell’s (1958) cluster
catalog lists 2712 clusters north of —20° declination and away from the Galactic
plane. Employing a less restrictive definition of galaxy clusters, the catalog by
Zwicky et al. (1961-1968) identifies 9134 clusters north of —3° declination. Cluster
masses exceed ~ 5 x 104 M, and they have typical radii of ~ 1.5 Mpc.

When X-ray telescopes became available after 1966, it was discovered that
clusters are powerful X-ray emitters. Their X-ray luminosities fall within 1043 —
10% erg s, rendering galaxy clusters the most luminous X-ray sources in the
sky. Improved X-ray telescopes revealed that the source of X-ray emission in
clusters is extended rather than point-like, and that the X-ray spectra are best
explained by thermal bremsstrahlung from a hot, dilute plasma with temperatures
in the range 10" — 108K and densities of ~ 10~3 particles per cm®. Based on
the assumption that this intracluster gas is in hydrostatic equilibrium with the
gravitational potential of the total cluster matter, the X-ray temperature and flux
can be used to estimate the cluster mass. Typical results approzimately (i.e. up to a
factor of ~ 2) agree with the mass estimates from the kinematics of cluster galaxies.
The mass of the intracluster gas amounts to about 10% of the total cluster mass.
The X-ray emission thus independently confirms the existence of dark matter in
galaxy clusters. Sarazin (1986) reviews clusters of galaxies focusing on their X-ray
emission.

Later, luminous arc-like features were discovered in two galaxy clusters (Lynds
& Petrosian 1986; Soucail et al. 1987a,b). Their light is typically bluer than that of
the cluster galaxies, and their length is comparable to the size of the central cluster
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region. Paczynski (1987) suggested that these so-called arcs are images of galaxies
in the background of the clusters which are strongly distorted by the gravitational
lens effect close to the cluster centers. This explanation was generally accepted
after spectroscopy revealed that the arc sources are much more distant than the
clusters in which they appear (Soucail et al. 1988).

Large arcs require special alignment of the arc source with the lensing cluster.
At larger distance from the cluster center, images of background galaxies are only
weakly deformed, and they are referred to as arclets (Tyson 1988; Fort et al. 1988,;
Tyson, Valdes & Wenk 1990). The high number density of faint arclets allows to
measure the coherent distortion caused by the gravitational tidal field of a cluster
out to fairly large radii. :

These gravitational lens effects offer the possibility to detect and measure the
entire cluster mass, dark and luminous, without referring to any equilibrium or
symmetry assumptions like those required for the mass estimates from galactic
kinematics or X-ray emission. For a review on arcs and arclets in galaxy clusters,
see Fort & Mellier (1994).

Apart from being spectacular objects on their own, clusters are also of par-
ticular interest for cosmology. Being the largest gravitationally bound entities in
the cosmos, they represent the high-mass end of collapsed structures. Their num-
ber density, their individual properties, and their spatial distribution constrain the
power spectrum of the density fluctuations from which the structure in the universe
is believed to have originated (e.g. Viana & Liddle 1996; Eke, Cole & Frenk 1996).
Their formation history is sensitive to the parameters that determine the geometry
of the universe as a whole. If the matter density in the universe is high, clusters
tend to form later in the cosmic history than when the matter density is low (first
noted by Richstone, Loeb & Turner 1992). Consequently, the compactness and
the morphology of clusters are affected by the cosmic matter density, and this has
various observable implications.

This lecture deals with the question what we can learn about galaxy clusters
and the universe by investigating their gravitational lens effects and their X-ray
emission. It describes strong and weak gravitational lensing by clusters, and dis-
cusses the relation of strong lensing effects to the X-ray emission. I discuss aspects
of the cosmological relevance of galaxy clusters in Sect. 2. The principles of grav-
itational lens theory are reviewed in Sect. 3 as far as they are necessary for the
present purpose. Section 3 further describes strong and weak lensing by clusters.
The X-ray emission and its relation to strong gravitational lensing are the sub-
ject of Sect. 4. The lecture concludes with an outlook and a discussion of future
prospects in Sect. 5.

2 Cosmological Importance of Galaxy Clusters

As mentioned in the introduction, clusters of galaxies were first identified as re-
gions in the sky where the density of galaxies is significantly higher than average.
Abell (1958) compiled a catalog of clusters found on the photographic plates of the
Palomar Sky Survey. He defined clusters by three criteria: (1) the cluster contain
at least 50 galaxies in the magnitude range m3z < m < m3 + 2, where m3 is the
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magnitude of the third brightest cluster galaxy; (2) these galaxies be contained
within a circle of estimated radius R, = 1.5k~ Mpc, where h is the Hubble con-
stant in units of 100kms~! Mpc™!, and (3) the estimated cluster redshift be in
the range 0.02 < z < 0.20. R, is called the Abell radius. Abell assigned richness
classes and distance classes to the clusters. The richness class is defined by the
number of galaxies within the Abell radius, and the distance class is a measure for
the magnitude of the tenth brightest cluster galaxy.

Zwicky et al. (1961-1968) used less restrictive criteria to define galaxy clusters:
(1) a contour (an isopleth) is determined within which the galaxy surface density is
twice the background density; (2) within this isopleth, there be 50 cluster galaxies
in the magnitude range m; < m < mj + 3, with m; the magnitude of the brightest
cluster galaxy.

The velocity dispersion o, of the cluster galaxies is observed to be ~ 900kms™1,
averaged over moderately rich and rich Abell clusters. Assuming that the galaxies
are in virial equilibrium with the cluster potential, the velocity dispersion and the
Abell radius can be converted to a mass estimate,

2 2
My ~ "&Ra ~56x 101*h~I M, . (1)

The redshift range of the Abell catalog, 0.02 < 2z < 0.2, encloses ~ 3.5 x
108 h=3 Mpc3. This number is insensitive to the choice of the cosmic parameters
because the upper redshift limit is small, and hence all distances are well described
by the Hubble law, which does not depend on cosmic parameters. Of the 2712
clusters in Abell’s catalog, 818 fall into (the poorest) richness class 0. Excluding
those, there are 1894 clusters with richness class > 1 in that volume, which yields
an estimate for the spatial cluster density of

1894 . 3.r -3 ~6 13 N ey o3
More careful determinations arrive at similar numbers (e.g. Bahcall 1988).

In the course of their forfnation, clusters need to collect cosmic material from
a large volume. The radius R of that volume is determined by

1 4 -
M = 3 R o, (3)

or
R~78h10;*Mpc, (4)

where per =~ 2 x 1072 gcm™3 is the critical density of the universe. This radius
defines a typical scale for the linear theory of cluster formation. In linear theory,
density fluctuations grow in place. If one considers the gravitational cbllapse of a
spherical overdense region in an expanding universe and compares it to the evolu-
tion of its density contrast in linear theory, the sphere reaches its maximum radius
(the “turnaround”) before collapse when its linear density contrast is 6. = 1.686.
Therefore, linear theory predicts that clusters can form where the linear density
contrast averaged over a scale of R exceeds d..
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Assuming a Gaussian distribution of the density contrast, we have

_ 1 52
p(, R) = Taeas P (—57) ; (5)
7rO'R UR

where the notation indicates that the width of the distribution depends on the scale
R over which the density contrast is averaged. The variance o on the scale R is
determined by the power spectrum of the density fluctuations. Press & Schechter
(1974) assumed that the fraction of the universe that is contained in collapsed
objects characterized by their linear scale R is

F, = / d6p(5,R) = —erfc ( faR) (6)

We can now determine the variance o of the cosmic density fluctuations on the
linear scale of galaxy clusters. According to the masses and the number density of
clusters, the fraction of the universe that is observed to be contained in clusters is
MV'H' C
pchO

F! = ~8x10730;!. (7)
Thus clusters are rare objects, especially if the density of the universe is high,
Qo ~ 1. Equating the observed cluster fraction with that expected from eq. (6),
and solving for o, we find

{070 (R=1)
Or _{ 0.96 (QE =02) - ®

In order to reproduce the observed cluster abundance, the power spectrum of
the density fluctuations must therefore be normalized such that its average over
scales smaller than R is 0. Note that the scale R varies with Qg as in eq. (4). To
compare the amplitudes of the power spectrum for different choices of 2y, we need
to transform oz to a common scale, which is traditionally chosen as 8 h~! Mpc.
This transformation depends somewhat on the shape of the power spectrum. For
a CDM power spectrum, we find

_f068 (=1
"8‘{ 1.38 (Qz=0.2) ' ®)

This fairly rough estimate is confirmed by the more detailed studies of Viana &
Liddle (1996); Eke, Cole & Frenk (1996); and Pen (1996).

The spatial number density of clusters together with their typical mass thus
fixes the amplitude of the power spectrum of density fluctuations in the universe.
For the CDM model, the required amplitude is lower by more than a factor of two
in a high-density than in a low-density universe.

2.1 Timescales for Cluster Formation

Being rare objects, clusters arise from density perturbations well in the tail of the
Gaussian distribution. Since the variance oz of this Gaussian grows in time, the
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Figure 1: Cluster fraction as a function of redshift, normalized to unity at the
present epoch. The curves show the result for three pairs of cosmological parame-
ters: Qo = 1, 2 = 0 (solid curve); 2y = 0.2, Q4 = 0 (dotted curve); Qp = 0.2,
Qa = 0.8 (dashed curve). The figure shows that clusters form late, in particular
when (O is high.

cluster abundance (6) drops rapidly backwards in time. Also, peculiar velocities of
galaxies are typically of order a few hundred kpc Gyr~!. Since the cluster material
is collected from a region of order a few Mpc across, this process takes of order
10 Gyr to complete, which is comparable to the age of the universe. Therefore,
clusters generally tend to form late in the cosmic history.

Since the cluster fraction scales with €2 ! clusters are less rare when € is low.
Hence, in a low-density universe clusters tend to form earlier than in a high-density
universe. This was first noted by Richstone, Loeb & Turner (1992), and their
argument was modified for self-consistency and extended towards non-spherical
collapse models by Bartelmann, Ehlers & Schneider (1993). They give an expression
for the time evolution of the cluster abundance and show that it is valid not only
for spherically symmetric, but also for anisotropic collapse. This result, normalized
to unity at the present epoch, is illustrated in Fig. 1. For the figure, the power
spectrum of the density fluctuations was normalized such that the present cluster
number density is reproduced.

The figure confirms that clusters form late for all choices of the cosmological
parameters. Their formation is particularly delayed when g is high. While half of
the clusters that exist today had already formed at redshifts between 0.4 and 0.6
for Qp = 0.2, with only little influence of the cosmological constant, it takes until
redshift z ~ 0.1 for half the cluster population to form if €2y = 1.

2.2 Cluster Structure and Cosmological Parameters

Real clusters do not form from isolated spherical density perturbations. Rather,
they are assembled in subsequent mergers of protoclusters into one object which
grows in time, and they continuously accrete matter from their surroundings (Lacey
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& Cole 1993, 1994). During most of their history, clusters therefore are objects
which show remains of subclumps which have merged with them. The matter
distribution in their neighborhood is inhomogeneous and thus exerts tidal forces
on the clusters, which can additionally delay the relaxation of a forming cluster to
dynamical equilibrium. A simple timescale argument illustrates this point.

Typical galaxy velocities in clusters are of order 900 km s~!, and typical cluster
diameters are of order 2R, = 3h~! Mpc. The time it takes a galaxy to cross a
cluster is therefore of order 3 x 10° h~! yr. This provides a dynamical timescale for
a galaxy cluster. It was shown in Fig. 1 that, if Qg = 1, cluster formation sets in
only after z ~ 0.4. The cosmic time that has passed since then is only ~ 4 x 10° yr,
so that even the older clusters in a high-density universe were formed only about
one dynamical timescale ago. In a low-density universe, the cosmic timescale is
longer, and cluster formation sets in earlier, but still the cosmic time is not much
longer than the dynamical time scale of the clusters.

Therefore, it appears implausible that clusters could have relaxed and formed
smooth, spherically symmetric bodies in the short time they had after their forma-
tion. Remnants of merger and accretion events should be seen in many of them.

Numerical simulations seemed to indicate that clusters were significantly less
structured in low-density than in high-density universes, reflecting the longer time
they had to relax (Evrard et al. 1993). It turned out later that in these simulations,
boundary conditions were set up such that accretion and infall were artificially sup-
pressed for low 2p. More recent simulations involving a consistent treatment of the
boundaries of the simulation volume arrive at the conclusion that the differences in
cluster substructure for different values of g are less pronounced than suspected
earlier (Jing et al. 1995). In any case, clusters are frequently observed to have
evident structure (e.g. Geller & Beers 1982; Dressler & Shectman 1988; West &
Bothun 1990; Jones & Forman 1992, and references therein; Béhringer 1993; Mohr,
Fabricant & Geller 1993). It is, however, unclear at the moment whether the differ-
ences in the abundance and the amount of substructure are sufficient to distinguish
between different cosmological models (Jing et al. 1995).

3 Clusters as Gravitational Lenses

Being pronounced density inhomogeneities, clusters must deflect light passing them
closely on the way from the sources to the observer. Gravitational light deflection
gives rise to magnification and distortion effects. Depending on whether these
effects are strong or weak, two distinct kinds of such gravitational lensing effects
can arise. Strong lensing leads to the formation of arcs, strongly distorted images
of galaxies on the far side of the clusters. Weak lensing causes coherent distortion
patterns which can be observed by analyzing the shapes of samples of faint and
distant galaxies. After a brief introduction to the theory of gravitational lensing, I
discuss both effects and show what kind of information can be obtained from them.
For general reference on gravitational lensing, see Schneider, Ehlers & Falco (1992);
Blandford & Narayan (1992); Fort & Mellier (1994); and Narayan & Bartelmann
(1996).

© Astronomische Gesellschaft * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1997RvMA...10...61B

TI07RINK. Z 710 7 618D

r

67

3.1 Introduction to Gravitational Lens Theory

The propagation of light in arbitrary curved spacetimes is in general a complicated
theoretical problem. However, for almost all cases of relevance to gravitational
lensing, we can assume that the overall geometry of the universe is well described
by the Friedmann-Lemaitre-Robertson-Walker metric and that the matter inhomo-
geneities which cause the lensing are no more than local perturbations. Light paths
propagating from the source past the lens to the observer can then be broken up
into three distinct zones. In the first zone, light travels from the source to a point
close to the lens through unperturbed spacetime. In the second zone, near the lens,
light is deflected. Finally, in the third zone, light again travels through unperturbed
spacetime. To study light deflection close to the lens, we can assume a locally flat,
Minkowskian spacetime which is weakly perturbed by the Newtonian gravitational
potential of the mass distribution constituting the lens. This approach is legitimate
if the Newtonian potential ® is small, |®| < ¢?, and if the peculiar velocity v of
the lens is small, v < c.

These conditions are satisfied in virtually all cases of astrophysical interest.
Consider a galaxy cluster at redshift ~ 0.3 which deflects light from a source at
redshift ~ 1. The distances from the source to the lens and from the lens to the
observer are ~ 1 Gpc, or about three orders of magnitude larger than the diameter
of the cluster. Thus zone 2 is limited to a small local segment of the total light
path. The relative peculiar velocities in a galaxy cluster are ~ 103 km s~! < ¢, and
the Newtonian potential is |®] < 107* ¢? < 2, in agreement with the conditions
stated above.

In view of these simplifications, we can describe light propagation close to grav-
itational lenses in a locally Minkowskian spacetime perturbed by the gravitational
potential of the lens to first post-Newtonian order. The effect of spacetime cur-
vature on the light paths can then be expressed in terms of an effective index of
refraction n, which is given by (e.g. Schneider et al. 1992)

2 2
n=1——63<1>=1+c—2|<1>|. (10)
As in normal geometrical optics, light propagation can now be described by Fer-
mat’s principle. Application of Fermat’s principle to a point mass M shows that a

light ray passing the point mass at distance b is deflected by the angle

A4GM
c2b

&= (11)

Most of the light deflection occurs at a distance from the lens that is typically
much smaller than the distances between observer and lens and between lens and
source. The lens can therefore be considered thin compared to the total extent
of the light path. The mass distribution of the lens can then be projected along
the line-of-sight and be replaced by a mass sheet orthogonal to the line-of-sight.
The plane of the mass sheet is commonly called the lens plane. The mass sheet is
characterized by its surface mass density

(&) = / o€, 2)dz (12)
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Figure 2: Illustration of a gravitational lens system. The light ray propagates
from the source S at transverse distance n from the optic axis to the observer
O, passing the lens at transverse distance . It is deflected by an angle &. The
angular separations of the source and the image from the optic axis as seen by the
observer are 3 and 6, respectively. The reduced deflection angle a and the actual
deflection angle & are related by eq. (14). The distances between the observer and
the source, the observer and the lens, and the lens and the source are Ds, Dq, and
Dy, respectively.

where f is a two-dimensional vector in the lens plane. The deflection angle at
position £ is the sum of the deflections due to all the mass elements in the plane:

K CE-dp

The geometry of a typical gravitational lens system is shown in Fig. 2. A light
ray from a source S is deflected by the angle & & at the lens and reaches an observer O.
The angle between the (arbitrarily chosen) optic axis and the true source position
is B, and the angle between the optic axis and the image I is . The distances
between observer and lens, lens and source, and observer and source are Dy, Dy,
and Dy, respectively.

It is now convenient to introduce the reduced deflection angle

é . (14)

From Fig. 2 we see that 0Dy = 8Dg + &:Dgg. Therefore, the positions of the source
and the image are related through the simple equation

- —

B=6-ao). (15)
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Equation (15) is called the lens equation, or ray-tracing equation. It is nonlinear
in general, and so it is possible to have multiple images 6 corresponding to a single
source position ﬁ . As Fig. 2 shows, the lens equation is trivial to derive and requires
merely that the following Euclidean relation should exist between the angle enclosed
by two lines and their separation,

separation = angle x distance . (16)

It is not obvious that the same relation should hold in curved spacetime. However,
if the distances Dy 45 are defined such that eq. (16) holds, then the lens equation
must obviously be true. Distances so defined are called angular-diameter distances,
and eq. (15) is valid only when these distances are used. Note that in general
Dys # Ds — Dy.

3.1.1 Effective Lensing Potential

We now introduce the critical surface mass density

& _Ds
4G DaDgyg

Zcr =

D -1
~ 0.35gcm ™2 <1Gpc) : (17)

where the effective distance D is the combination of distances

DyDys

D = D,

: (18)

A lens with a constant surface mass density of ¥, focuses perfectly. Let us further
define a scalar potential ¢ as

W(@) = % / (@) |d - & 26 (19)

where the convergence k is the surface mass density divided by ¥¢;. Then, the
deflection angle is the gradient of 9,

3(6) = Vo = ~ g 60 a%¢' (20
af) = ¢'—; K( )‘—5—_—5{'; ; )

and ¢ and the convergence k are related through the Poisson equation
1

The local properties of the lens mapping are described by its Jacobian matrix A,

_0B (. 0a® _[. %)
we B (o 20) (o 290)

As a consequence of Liouville’s theorem, lensing conserves surface brightness. How-
ever, it changes the solid angle under which an object appears, and thus leads to
magnification and distortion effects. The local solid-angle distortion is given by
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the determinant of A. A solid-angle element 632 of the source is mapped to the
solid-angle element of the image 662, and so the magnification is given by

562
— = (det A)7*. 23
577 = (det A) (23)
Equation (22) shows that the Hessian matrix of the potential 1 describes the
deviation of the lens mapping from the identity mapping. For convenience, we

introduce the abbreviation

%

— =i . 24
06;00; Vij (24)
Since the Laplacian of ) is twice the convergence, we have
1 1
p= g (P +om) =5 trohy . (25)

Two additional linear combinations of v;; are important, and these are the com-
ponents of the shear tensor,

- 1 -
71(0) = 3 (Y11 —P22) ,  72(0) = Y12 =¥z . (26)
With these definitions, the Jacobian matrix reads
txem )
A= . 27
( -2 I-k+m (@7)

The meaning of the terms convergence and shear now becomes intuitively clear.
Convergence acting alone causes an isotropic focusing of light bundles, leading to
an isotropic magnification of a source. The source is mapped onto an image with
the same shape but larger size. Shear introduces anisotropy (or astigmatism) into
the lens mapping; the quantity v = (77 + ¥3)/? describes the magnitude of the
shear. A circular source of unit radius becomes, in the presence of both x and 7,
an elliptical image with major and minor axes :

) I ¢ ) I (28)
The magnification is

p=(det A~ =[(1-k)> -~ (29)

Note that the Jacobian A is in general a function of position 6.

Points § in the lens plane where the Jacobian matrix is singular, det A = 0,
are called critical points. They form closed curves, the critical curves. The image
curves of the critical curves in the source plane are called caustics. Formally, point
sources on caustics are infinitely magnified. This does not pose any problem in
reality because astrophysical sources are not point-like, and the average magnifica-
tion of extended sources is finite. Furthermore, even if the source was point-like,
its magnification remained finite because then wave-optical effects became relevant.
Figure 3 displays the critical curves and caustics of a simple lens model and shows
the image shapes of sources close to the caustics. The figure also illustrates the
distinction between tangential and radial critical curves and caustics in terms of
the preferred direction of image elongation. Caustics divide the source plane into
regions with different image numbers. A source outside all caustics has one image,
and the image number changes by two upon each caustic crossing.
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Figure 3: Imaging of an extended source by a non-singular circularly-symmetric
lens. A source close to the point caustic at the lens center produces two tangentially
oriented arc-like images close to the outer critical curve, and a faint image at the
lens center. A source on the outer caustic produces a radially elongated image on
the inner critical curve, and a tangentially oriented image outside the outer critical
curve. Because of these image properties, the outer and inner critical curves are
called tangential and radial, respectively.

3.2 Strong Lensing by Clusters — Giant Arcs

The subject of gravitational lensing by galaxy clusters entered the observational
realm with the discovery of large and luminous arcs in the galaxy clusters A 370
and Cl 2244 (Lynds & Petrosian 1986; Soucail et al. 1987a,b). Paczynski (1987)
proposed that the arcs are the images of background galaxies which are strongly
distorted and elongated by the gravitational lens effect of the foreground cluster.
This explanation was confirmed when the first arc redshifts were measured and
found to be significantly greater than that of the clusters (Soucail et al. 1988).

Figure 4 illustrates that extended sources like galaxies produce large arcs if they
lie on top of caustics. The largest arcs are formed from sources on cusp points,
because then three images of a source merge to form the arc (cf. the right panel
in Fig. 4). At the so-called “lips” and “beak-to-beak” caustics, which are related
to cusps, similarly large arcs are formed. Sources on a fold caustic give rise to two
rather than three merging images and thus form moderate arcs.

3.2.1 Efficiency of Arc Formation by Clusters

We have seen before (Fig. 1) that clusters tend to form late in the history of the
universe. They are expected in appreciable numbers only at fairly low redshift,
in particular if the density of the universe is high, €y < 1. As for any other
lens, the strength of their gravitational lens effects depends on the geometry of the
system containing the source, the cluster, and the observer. This dependence is
characterized by the effective distance (18). It peaks at roughly half the angular-
diameter distance between the source and the observer, and it drops to zero when

the sources are shifted towards the observer, or when the lens is shifted towards
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o) (4

Figure 4: Compact source moving away from the center of an elliptical lens. Left
panel: source crossing a fold caustic; right panel: source crossing a cusp caustic.
In each panel, the diagram on the left shows critical lines and image positions and
the diagram on the right shows caustics and source positions.

the sources. For sources at redshift z; ~ 1, lenses are most efficient at redshift
zq ~ 0.35, with only slight dependence on the cosmological parameters. Especially
if Q9 < 1, there exist very few clusters at that most efficient redshift, and at low
redshift where the number density of clusters is higher, their lens efficiency is largely
suppressed by the geometry of the lens system.

To obtain a simple estimate for the dependence on cosmological parameters
of the cluster efficiency to form large arcs, consider the product of spatial cluster
density, effective lensing distance, and physical volume V', which is proportional to

Wiens?) _ () D(z,20) 22 (30)
By definition, dNjeys/dz provides an estimate for the number of efficient lensing
clusters per redshift interval dz. All three factors in eq. (30) depend on the cosmo-
logical parameters. Figure 5 shows dNjeys/dz as a function of redshift z for three
choices of the cosmological parameters 2y and §24.

Figure 5 shows that the number of efficient strong cluster lenses per redshift
interval is expected to increase dramatically when the cosmic density is lowered.
This results from two effects. First, for low p, clusters form earlier, so that there
exist more clusters at the redshift where lenses are most efficient. Second, the
cosmic volume per redshift interval is larger for lower 0y and higher Q24 than in the
Einstein-de Sitter case (5 = 1, 24 = 0). Apart from the change in the expected
number of efficient cluster lenses with the cosmic parameters, the expected average
redshift of lensing clusters is changed. While it is ~ 0.2 for {2y = 1, it increases to
~ 0.5—0.6 for 29 = 0.2. These effects were calculated in more detail by Bartelmann
(1993).
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Figure 5: Estimate dNyeps/dz for the number of efficient strong cluster lenses per
redshift interval dz, as defined in eq. (30). The three curves are for three choices
for the cosmological parameters: g = 1, Q4 = 0 (solid curve); 2 = 0.2, Q4 =0
(dotted curve); Qp = 0.2, 2 = 0.8 (dashed curve). Note the logarithmic scale of
the ordinate. The curves were calculated for sources at redshift z; = 1.

3.2.2 Asphericity of Cluster Mass

The fact that the observed giant arcs never have counter-arcs of comparable bright-
ness, and rarely have even small counter-arcs, implies that the lensing geometry
has to be non-spherical (Grossman & Narayan 1988; Kovner 1989; see also Figs. 3
and 4. Cluster potentials therefore must have substantial quadrupole and perhaps
also higher multipole moments.

Large deviations of the lensing potentials from spherical symmetry also help
increase the probability of producing large arcs. Bergmann & Petrosian (1993)
argued that the apparent abundance of large arcs relative to small arcs and arclets
can be reconciled with theoretical expectations if aspheric lens models are taken
into account. Bartelmann & Weiss (1994) and Bartelmann, Steinmetz & Weiss
(1995) showed that the probability for large arcs can be increased by more than
an order of magnitude if aspheric cluster models with significant substructure are
used instead of smooth spherically symmetric models.

The latter two studies investigated the strong lensing effects of numerically
simulated clusters. The clusters formed by gravitational collapse of Gaussian initial
density fluctuations with CDM perturbation spectrum. Particular care was taken
in the simulations to ensure that the tidal field of the matter surrounding the
clusters was properly taken into account. The simulated clusters were then used
to study their gravitational lens effects on a population of extended sources with
random positions and ellipticities at redshift z; = 1. The images were automatically
classified as to their length, width, curvature radius and so forth. In total, the
properties of ~ 73,000 simulated arcs were analyzed.

The primary results are cross sections of the numerically simulated clusters
for the formation of large arcs with specified properties. The cross section for
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Figure 6: Optical depths for the formation of arcs as a function of the length-to-
width ratio of the arcs. The solid curve was obtained from numerically simulated
clusters, the dotted curve from spherically symmetric clusters with the same mass.
Note the logarithmic scale of the ordinate.

a particular image configuration is defined as the area in the source plane within
which a source must be located in order to be lensed as such an image. The fraction
of the source sphere covered by the arc cross sections of individual clusters then
equals the probability for a source to be imaged as an arc. This probability is also
called the optical depth for arc formation. The cross sections and optical depths
were compared to those of spherically symmetric clusters with the same masses as
the numerically simulated clusters. An example for optical depths is given in Fig.
6.

Figure 6 shows that the simulated clusters, whose mass distribution is generally
highly asymmetric, produce an optical depth for the formation of arcs with large
length-to-width ratio that is higher by more than an order of magnitude compared
to clusters with the same masses and core radii, but spherically symmetric mass
distribution. This pronounced effect has two principal reasons.

First, large arcs occur close to critical curves where det A ~ 0. According to
eq. (29), convergence « and shear +y act together in det A. If the shear vanished,
the critical curve was the contour k = 1. With increasing shear, the critical curve
moves into regions where £ < 1. The shear v quantifies the gravitational tidal field
of the mass distribution. Asymmetries in the mass distribution increase the tidal
field and the shear compared to a spherically symmetric mass distribution, and
hence the critical curve is at lower convergence « than in the spherically symmetric
case. Since cluster mass profiles on average drop outward, this implies that the
critical curve is then at larger distance from the cluster center, and hence the
region is increased where arcs can be formed.

Second, the largest arcs are formed from sources close to cusps in the caustic
curves, because there three images of the source merge rather than two, as illus-
trated in the right panel of Fig. 4. Spherically symmetric lenses cannot produce
cusps because cusps single out preferred directions in the source plane, which are
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not compatible with spherical symmetry. Cusps therefore require asymmetric lens-
ing mass distributions. Generally, the less symmetric a lens is, the more cusps it
can produce, and the higher is the probability to form very long and thin arcs.

The primary result of the studies by Bartelmann & Weiss (1994) and Bartel-
mann et al. (1995) is therefore that accounting for cluster asymmetries and sub-
structure is crucial for understanding the observed frequency of large arcs. The
mere fact that clusters are frequently observed to be strongly substructured thus
indicates that their strong lensing effects cannot properly be described by families
of spherically symmetric mass distributions.

This suggests that the statistics of observed arcs and the global geometry of the
universe may be related. As discussed above, clusters form the later the higher the
matter density of the universe is. They then have less time to relax to symmetric
mass distributions. Thus, a higher degree of cluster substructure is expected in a
high-density compared to a low-density universe. Since arc statistics is so sensitive
to cluster substructure, one would expect from this reasoning that arcs should be
much more abundant in a high-density than in a low-density universe.

However, we must account for another effect. As argued in Sect. 2, the am-
plitude of the power spectrum must be smaller if Qg is higher to reproduce the
observed current number density of clusters. In that case, the effect illustrated in
Fig. 5 becomes more important. If 29 = 1, most clusters are at such low redshift
that they fail to be efficient lenses. More recent simulations (Huss, Bartelmann &
Colberg, in preparation), in which the power spectrum is normalized to the cor-
rect cluster abundance, reveal that in a high-density universe, virtually no clusters
should exist that are able to form arcs, while arcs can be formed in universes with
lower € (see also the discussion in Sect. 5). Hence, the normalization of the power
spectrum is crucial for any conclusions on the geometry of the universe drawn from
arc statistics.

Figure 1 shows that half of the clusters existing today should have formed
at redshift ~ 0.5 if Qp ~ 0.2. At that redshift, their lens efficiency is high, as
Fig. 5 indicates. Since cluster formation is still going on at that epoch, pronounced
substructure should be frequent in these clusters. Their lens efficiency is thus higher
by roughly an order of magnitude compared to spherically symmetric, relaxed
systems, as shown in Fig. 6. In other words, if the normalization of the density-
fluctuation power spectrum to the present cluster abundance is correct, the arc
abundance indicates that €2y is less than unity, and the arc formation efficiency
is boosted by the larger tidal fields of the asymmetric matter distribution of the
clusters in formation. In turn, this would predict a fairly high average redshift of
such clusters which show large arcs, z ~ 0.5 — 0.6.

3.2.3 Cluster Mass Inside a Giant Arc

The location of an arc in a cluster provides a simple way to estimate the projected
cluster mass within a circle traced by the arc. For a circularly symmetric lens,
the average surface mass density () within the tangential critical curve equals the
critical surface mass density ¥.. Tangentially oriented large arcs occur approxi-
mately at the tangential critical curves. The radius 0, of the circle traced by the
arc therefore gives an estimate of the Einstein radius 0 of the cluster. Thus we
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have
(E(0arc)) = (2(68)) = Zer (31)
and we find for the mass enclosed by 6 = 6,
M(0) = T w (Dg0)? =~ 1.1 x 10 M, (-‘3—)2 (L) : (32)
30" 1Gpc

The mass estimate (32) is based on very simple assumptions. It can be improved
by modeling the arcs with parameterized lens mass distributions and carrying out
more detailed fits of the observed arcs (an excellent example for this method is the
study by Kneib et al. 1993 on Abell 370). It is instructive to see how inaccurate
the mass estimate (32) can become in non-symmetric clusters. Bartelmann (1995a)
used numerical cluster models for comparing the true cluster masses to simple
cluster mass estimates obtained from the location of large arcs. For that particular
simulated cluster sample, the masses derived from (32) are systematically too high
by ~ 60% on average, and by even a factor of two in ~ 20% of the cases. The
basic physical reason for this systematic deviation is again that the tidal field of
asymmetric clusters is stronger than that of symmetric clusters. Since the lensing
effects are determined by the combination of surface mass density and its tidal
field, the cluster mass required to form large arcs can be lower in the presence of
asymmetries than in the symmetric case.

3.2.4 Core Radii

If a cluster is able to produce large arcs, its surface-mass density in the core must be
approximately supercritical, ¥ 2 ¥ Narayan, Blandford, & Nityananda (1984)
argued that cluster mass distributions need to have smaller core radii than those
derived from optical and X-ray observations if they are to produce strong gravita-
tional lens effects. This has been confirmed by many later efforts to model giant
arcs. In virtually every case the core radius estimated from lensing is significantly
smaller by a factor of ~ 2 — 10 than the estimates from optical and X-ray data.
Results on lens-derived core radii fall in the range 20 A~ kpc < 7core < 50 A7 kpe.

Statistical analyses based on spherically symmetric cluster models lead to sim-
ilar conclusions. Miralda-Escudé (1992, 1993) argued that cluster core radii can
hardly be larger than the curvature radii of large arcs. Wu & Hammer (1993)
claimed that clusters have to have density profiles that are either singular or much
steeper than isothermal in order to reproduce the observed abundance of large arcs.
Although this conclusion can substantially be altered once deviations from spheri-
cal symmetry are taken into account (Bartelmann et al. 1995), it remains true that
small cores with reore < 50 ™1 kpc are required in all observed arc clusters. Cores
of this size can also be reconciled with large-arc statistics.

Interestingly, there are at least two observations which appear to indicate that
cluster cores, although small, should be finite. Fort et al. (1992) discovered a radial
arc near the center of MS 2137-23, and Smail et al. (1996) found a radial arc in
A 370. To produce a radial arc with a softened isothermal sphere model, the core
radius has to be roughly equal to the distance between the cluster center and the
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radial arc (cf. Fig. 3). Mellier, Fort & Kneib (1993) find reore = 20h71 kpe in
MS 2137-23, and Smail et al. (1996) infer reore ~ 25271 kpc in A 370.

These results, however, have to be interpreted with caution because it may
well be that the commonly used softened isothermal sphere model is inadequate
to describe the interiors of galaxy clusters. While this particular model indeed
requires core radii on the order of the radial critical radius, other lens models can
produce radial arcs without having a flat core, and there are even singular density
profiles which can explain radial arcs (Miralda-Escudé 1995; Bartelmann 1996).
Such singular profiles for the dark matter are consistent with the fairly large core
radii inferred from the X-ray emission of clusters, if the intracluster gas is isothermal
and in hydrostatic equilibrium with the dark-matter potential (Navarro, Frenk &
White 1996).

Bartelmann (1996) presented a proof that the type of dark-matter profile first
found in simulations by Navarro et al. (1996) necessarily produces a tangential and
a radial critical curve despite its central singularity. The two parameters that char-
acterize the profile, viz. its total mass and its concentration, can be constrained
through observations of clusters that contain a radial and a tangential arc. Defin-
itive conclusions require that the redshifts of both arcs be known. Two clusters
have been discovered so far that contain a radial and a tangential arc, namely Abell
370 and MS 2137. In both cases, the redshift of the radial arc is yet unknown. One
can then constrain the redshift of the arcs by requiring that the parameters of the
observed cluster should match the parameters of numerically simulated clusters, in
order to see whether numerically simulated clusters are compatible with those ob-
served. Predictions for the redshifts of the radial arcs in Abell 370 and in MS 2137
are given in Bartelmann (1996). If future spectroscopy should reveal different red-
shifts, the numerically simulated cluster models would be falsified. This provides
an important test of our understanding of cluster formation because the profile dis-
covered by Navarro et al. (1996) was recently also found to be independent of the
perturbation spectrum of the cosmic density fluctuations and of cosmic parameters
(Cole & Lacey 1996; Huss et al. 1996). It therefore seems to reflect a generic and
universal property of galaxy clusters which, if true, provides a valuable hint as to
the dynamical processes that define the shapes of galaxy clusters.

3.3 Weak Lensing by Clusters — Arclets

In addition to the occasional giant arc, which is produced when a source happens
to straddle a caustic, a lensing cluster also produces a large number of weakly
distorted images of other background sources which are not located near caustics.
These are the arclets first detected by Fort et al. (1988). There is a population of
distant blue galaxies in the universe whose spatial density reaches 50 — 100 galaxies
per square arc minute at faint magnitudes (Tyson 1988). Note that this implies
that there are ~ 30,000 — 70,000 galaxies on the area of the full moon! In each
cluster field there are therefore on the order of 50 — 100 arclets per square arc
minute exhibiting a coherent pattern of distortions.

The separations between arclets, typically ~ (5 — 10)”, are much smaller than
the scale over which the gravitational potential of a cluster as a whole changes
appreciably. The weak and noisy signals from individual arclets can therefore be
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averaged by statistical techniques to get an idea of the mass distribution of a cluster.
This technique was first demonstrated by Tyson, Valdes & Wenk (1990). Kochanek
(1990) and Miralda-Escudé (1991) studied how parameterized cluster lens models
can be constrained with arclet data.

The first systematic and parameter-free procedure to convert the observed el-
lipticities of arclet images to a surface density map )](5) of the lensing cluster was
developed by Kaiser & Squires (1993). An ambiguity intrinsic to all such inver-
sion methods which are based on shear information alone was identified by Seitz &
Schneider (1995). This ambiguity can be resolved by including information on the
convergence of the cluster. Methods for this were developed by Broadhurst, Taylor
& Peacock (1995) and Bartelmann & Narayan (1995).

3.3.1 The Kaiser & Squires Algorithm

The technique of Kaiser & Squires (1993) is based on the fact that both convergence
n(B) and shear v, 2(0) are linear combinations of second derivatives of the effective
lensing potential 1(6) [cf. eqgs. (25) and (26)]. There is thus a mathematical relation
connecting the two. In the Kaiser & Squires method one first estimates ; 2(0)
by measuring the weak distortions of background galaxy images, and then uses
the relation to infer k(f). The surface density of the lens is then obtained from
%(6) = (6) Ser (see eq. 17).

By means of Fourier transformation, it can be shown that x and -y are related
through a convolution in 6 space,

- 1 e
W@ =7 [ PoR[D1@-7)4@)] (33)
where D is the complex convolution kernel,

(62 — 62) — 26,6,
Z ’

D) = (34)

and 7(5) is the complex shear,

7(6) = 71(8) + ir2(8) - (35)

The asterisk denotes complex conjugation.

The key to the Kaiser & Squires method is that the shear field 7(5) can be
measured. (Elaborate techniques to do so were described by Bonnet & Mellier
1995 and Kaiser, Squires & Broadhurst 1995.) If we define the ellipticity of an
image as

-7 .
e2l¢

| o

€e=¢€ +ieg = , T , (36)

where ¢ is the position angle of the ellipse and a and b are its major and minor axes,
respectively, we see from eq. (28) that the average ellipticity induced by lensing is

©={115) )
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where the angular brackets refer to averages over a finite area on the sky. In the
limit of weak lensing, x < 1 and |y| < 1, and the mean ellipticity directly gives
the shear,

(@)~ (a@), (20)~(a@). (38)

The 71(f), ¥2(8) fields so obtained can be transformed using the integral (33) to
obtain x(6) and thereby %(f). The quantities (e;(6)) and (e2(6)) in (38) have to be
obtained by averaging over sufficient numbers of weakly lensed sources to achieve
a reasonable signal-to-noise ratio.

3.3.2 Practical Details and Subtleties

In practice, several difficulties complicate the application of the elegant inversion
technique summarized by eq. (33). Atmospheric turbulence causes images taken
by ground-based telescopes to be blurred. As a result, elliptical images tend to be
circularized so that ground-based telescopes measure a lower limit to the actual
shear signal. This difficulty is not present in space-based observations.

The point-spread function of the telescope (i.e. the image of a point source
seen by the telescope) can be anisotropic and can vary across the observed field.
An intrinsically circular image can therefore be imaged as an ellipse just because
of astigmatism of the telescope. Subtle effects like slight tracking errors of the
telescope or wind at the telescope site can also introduce a spurious shear signal.

In principle, all these effects can be corrected for. Given the seeing and the
intrinsic brightness distribution of the image, the amount of circularization due to
seeing can be estimated and taken into account. The shape of the point-spread
function and its variation across the image plane of the telescope can also be cal-
ibrated. However, since the shear signal especially in the outskirts of a cluster is
weak, the effects have to be determined with high precision, and this is a challenge.

The need to average over several background galaxy images introduces a res-
olution limit to the cluster reconstruction. Assuming 50 galaxies per square arc
minute, the typical separation of two galaxies is ~ 8”. If the average is taken over
~ 10 galaxies, the spatial resolution is limited to ~ 30”.

We have seen in eq. (37) that the observed ellipticities strictly do not measure
7, but rather a combination of x and 7,

©=t0=(1). (39)

1—-&

Inserting v = (€)(1 — k) into the reconstruction equation (33) yields an integral
equation for k which can be solved iteratively. This procedure, however, reveals
a weakness of the method. Any reconstruction technique which is based on mea-
surements of image ellipticities alone is insensitive to isotropic expansions of the
images. The measured ellipticities are thus invariant against replacing the Jacobian
matrix A by some scalar multiple A A of it. Putting

r_ _ l1-k—m —Y2
A_AA_,\( S ) (40)
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we see that scaling A with ) is equivalent to the following transformations of « and
s

1-k'=X1-kK), ¥ =Xv. (41)

Manifestly, this transformation leaves g invariant. We thus have a one-parameter
ambiguity in shear-based reconstruction techniques,

kE—=A+(1-X), (42)

with A an arbitrary scalar constant.

This invariance transformation was highlighted by Schneider & Seitz (1995) and
was originally discovered by Falco, Gorenstein, & Shapiro (1985) in the context of
lensing by galaxies. If A < 1, the transformation is equivalent to replacing x by
k plus a sheet of constant surface mass density 1 — A. The transformation (42) is
therefore referred to as the mass-sheet degeneracy.

Another weakness of the Kaiser & Squires method is that the reconstruction
equation (33) requires a convolution to be performed over the entire g plane. Ob-
servational data however are available only on a finite field. Ignoring everything
outside the field and restricting the range of integration to the actual field is equiva-
lent to setting v = 0 outside the field. For circularly symmetric mass distributions,
this implies vanishing total mass within the field. The influence of the finiteness of
the field can therefore be quite severe.

Finally, the reconstruction yields x(8), and in order to calculate the surface
mass density 3(6) we must know the critical density S, but since we do not know
the redshifts of the sources there is a scaling uncertainty in this quantity. For a
lens with given surface mass density, the distortion increases with increasing source
redshift. If the sources are at much higher redshifts than the cluster, the influence
of the source redshift becomes weak. Therefore, this uncertainty is less serious for
low redshift clusters. '

3.3.3 Cluster Masses from Weak Lensing

How accurately can the masses of galaxy clusters be recovered through their co-
herent shear effect due to weak lensing? This question is pursued by Bartelmann
(1995b). A sample of 60 numerically simulated galaxy clusters with a broad dis-
tribution of masses and redshifts is used in that paper to calculate their lensing
effects on randomly placed and oriented elliptical background galaxies. A variety
of techniques is then applied to reconstruct the cluster mass distributions from
these simulated lensed images. With the true cluster masses being known in the
simulation, the accuracy of the reconstruction algorithms in terms of cluster mass
can be evaluated.

The goal of this paper is modest. The inversion equation (33) allows to recon-
struct two-dimensional mass maps of galaxy clusters. The paper only asks for the
accuracy of the one-dimensional cluster mass profile derived from weak lensing.

Yet, it turns out that the straightforward inversion equation (33) performs
rather poorly even if a detailed two-dimensional mass map is not required. The
total cluster mass in the observed field reconstructed with (33) vanishes. As men-
tioned before, this is a consequence of the fact that (33) involves an integration

© Astronomische Gesellschaft * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1997RvMA...10...61B

TI07RINK. Z 710 7 618D

r

81

over the entire plane, while data are always given on finite fields. If the integration
is restricted to the finite data field, the shear -y is effectively set to zero outside the
field boundaries. For an axially symmetric lens, this implies that the total mass
contained in the field must vanish, and this holds approximately also for asymmet-
ric lenses. Typically, a mass peak close to the field center is recovered, but it is
compensated by troughs of negative surface mass density close to the field bound-
aries. Moreover, the surface mass density in the cluster center is underestimated
by eq. (33) because it is strictly valid only in the linear regime where k < 1 and
|7] <« 1. These conditions can be violated close to the cluster center. Using the it-
erative technique starting from eq. (39) improves the accuracy of the reconstruction
in the cluster center.

The problem with the finite size of the data field can be cured by modifying
the inversion kernel D. Consider the relation (Kaiser 1995)

= ( Tt (43)
V2,1 — 71,2 ’

This shows that the convergence at any point § in the data field is related by a line
integral to the convergence at another point 6,

g
k(6) = r(6o) + /e i’ Tw[6(0)] . (44)

If the starting point  is far from the cluster center, n(ﬁo) may be expected to be
small and can be neglected. For each starting pomt 00, eq. (44) yields an estimate
for K,(O) #(6o), and by averaging over all chosen 6 modified reconstruction kernels
can be constructed (Schneider 1995; Kaiser et al. 1995; Bartelmann 1995b; Seitz
& Schneider 1996). Various choices for the set of starting positions fo have been
suggested. The choice implemented in Bartelmann (1995b) is to take 6o from the
entire field. In any case, the result is n(ﬁ) — K, where & is the average convergence
in the region from which the points 50 are taken. The average K is unknown, of
course, and thus a reconstruction based on eq. (44) yields k only up to a constant.
Equation (44) therefore explicitly displays the mass sheet degeneracy since the final
answer depends on the choice of the unknown n(go).

If the data field is sufficiently larger than the cluster, it seems safe to assume
that Xk is much smaller than x in the central region of the cluster. Then, the
cluster mass in the inner part of the data field can be recovered. A typical scale
of a galaxy cluster is the Abell radius, R, = 1.5h~! Mpc, which corresponds to
~ 7.5 at a redshift of ~ 0.4. If the data field is about twice that size, finite-
field reconstructions based on eq. (44) yield mass estimates which are accurate to
~ £10% in the inner few arc minutes of the field. Finite-field inversion kernels can
also be combined with the iterative non-linear reconstruction algorithm to improve
the accuracy at the cluster center.

Note that the mass sheet degeneracy (42) remains. The results are therefore
only reliable to the extent that the surface mass density drops to zero far from the
cluster. In view of the density inhomogeneities in the universe which are coherent
on cluster scales, the surface mass density may well remain finite even at large
distances from clusters.
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3.3.4 Eliminating the Mass Sheet Degeneracy by Measuring the Con-
vergence

Given by (det.A)~!, the magnification scales with A as u o« A2, Therefore, the
mass-sheet degeneracy can be broken by measuring the magnification u of the
images in addition to the shear (Broadhurst et al. 1995). Two methods have been
proposed to measure p.

The first relies on comparing the galaxy counts in the cluster field with those
in an unlensed “empty” field (Broadhurst et al. 1995). Under certain conditions,
the relation between the observed counts of galaxies brighter than some limiting
magnitude m depends on the magnification y. When observed in red light, galaxies
appear diluted behind clusters due to the magnification of the solid-angle by lensing.
The reduction of red galaxy counts behind the cluster A 1689 has been detected
by Broadhurst (1995).

The other method is to compare the sizes of galaxies in the cluster field to those
of similar galaxies in empty fields. Since lensing conserves surface brightness, it
is most convenient to match galaxies with equal surface brightness while making
this comparison (Bartelmann & Narayan 1995). The magnification is then simply
the ratio between the sizes of lensed and unlensed galaxies. Labeling galaxies by
their surface brightness has the further advantage that the surface brightness is a
steep function of galaxy redshift, which allows the user to probe the change of lens
efficiency with source redshift.

3.3.5 Maximum Likelihood Cluster Reconstruction

The preceding discussion shows that the application of the elegant inversion tech-
nique by Kaiser & Squires to real data and the interpretation of the results is not
at all straightforward. Therefore, a different approach was suggested by Bartel-
mann et al. (1996). It employs the fact that x and 7 are linear combinations of
second derivatives of the same effective lensing potential 9. In this method one
reconstructs 1 rather than k. If both x and 7 can be measured through image
distortions and magnifications (with different accuracies), then a straightforward
Maximum-Likelihood algorithm can be developed to construct 4 (f) on a finite grid
such that it optimally reproduces the observed magnifications and distortions. This
method is designed to work on a finite field. Furthermore, it is easy in this ap-
proach to incorporate measurement accuracies, correlations in the data, selection
effects etc. to achieve an optimal result. Simulations presented in Bartelmann et
al. (1996) show that cluster masses can be reconstructed with an uncertainty of
only a few per cent, and the mass sheet degeneracy is automatically broken.

4 Clusters as X-ray Emitters

4.1 Some Observational Facts

Many clusters of galaxies are powerful X-ray emitters with X-ray luminosities
Lx ~ 10%3 —10%° ergs~! (see Sarazin 1986 for a review). The dominant component
of the X-ray emission is diffuse and roughly follows the distribution of cluster
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galaxies. The continuum shape of the X-ray spectra, and the presence of X-
ray emission lines, indicate that the emission mechanism is scattering of thermal
electrons off ions, i.e. thermal bremsstrahlung. The inferred electron temperature
is T ~ 107 — 108 K, or kT ~ 1 —10keV. Together with the X-ray luminosities, this
implies that the X-ray emitting gas is dilute with a density of ~ 1073 atoms per
cm~3. The total mass of the diffuse plasma is then approximately equal to the total
mass in stars in the cluster galaxies, or roughly ~ 10% of the total cluster mass.
In many X-ray emitting clusters, the X-ray temperature remains approximately
constant out to radii of ~ 1Mpc, where it drops rather steeply (e.g. Markevitch
1996).

With increasing spatial resolution of X-ray telescopes, it became evident that
the X-ray emission is structured rather than axially symmetric. When spatially re-
solved spectral information became available, fairly complicated temperature maps
were obtained for some clusters (Briel & Henry 1994; Henry & Briel 1995; Henrik-
sen & Markevitch 1996; Honda et al. 1996; Zabludoff & Zaritsky 1996).

The X-ray emission from galaxy clusters thus provides evidence for the presence
of a hot, dilute intracluster plasma which at least in some cases reveals ongoing
dynamical processes in clusters. There are subcondensations in the gas, and there
are shocks which indicate the continuing infall of matter onto the main body of the
clusters.

4.2 Interpretation in Terms of Equilibrium Assumptions

If the intracluster gas was in hydrostatic equilibrium with the gravitational poten-
tial of the total cluster mass, and if the mass distribution was spherically symmetric,
the cluster mass could immediately be determined. If the gas density follows the
profile

-38/2

(1) [1 + (rc:re)z] : (45)

where 7cqre is the X—-ray core radius and § an adjustable parameter, the X-ray flux
Sx follows the profile

o1 —36+1/2
Sx(r) o [1 + (Tc:re) ] . (46)

The two parameters r¢qe and 3 can be fitted to the observed flux profile. Assuming
further that the gas is approximately isothermal close to the cluster center, the
equation of hydrostatic equilibrium implies

3/rkT 2
Mx() =G T3

(47)

where 7 is the temperature, 7 is the mean mass per particle, and £ = rrg}, is the
radius in units of the core radius. Physically, the parameter 3 is the ratio between

the specific kinetic energy of the cluster galaxies and the specific thermal energy
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of the gas particles (Cavaliere & Fusco-Femiano 1976),

= -2
moy

B=37

(48)

The flux profile (46) usually provides excellent fits to the azimuthally averaged
flux maps of X-ray clusters. X-ray core radii are of order reore ~ 100—200h! kpc,
and B ~ 2/3 (e.g. Jones & Forman 1984; Henriksen & Mushotzky 1985; Edge &
Stewart 1991). The fact that 3 # 1 is somewhat disturbing because one would
expect the specific energies of the cluster galaxies and the gas particles to be equal
in equilibrium. Does the observational finding 8 ~ 2/3 indeed imply that the gas
is hotter than the galaxies? This is known as the 3 discrepancy, which was amply
discussed in the literature (e.g. Sarazin 1986; Lubin & Bahcall 1993; Bahcall &
Lubin 1994).

Apart from the S discrepancy, the interpretation of the X-ray emission in terms
of cluster mass thus is a straightforward procedure. The observed X-ray flux map
is azimuthally averaged, and the profile (46) is fitted. The fit yields the parameters
Tcore and B, and the cluster mass profile follows immediately from eq. (47), provided
the equilibrium and symmetry assumptions made above are valid.

Cluster mass profiles derived this way usually agree with lensing mass estimates
to within a factor of ~ 2. This is reassuring in so far as the two types of mass
determination are based on completely different physical mechanisms. However,
in view of the frequently observed substructure in galaxy clusters, and in view of
the timescale arguments presented in section 2 before, it is doubtful whether the
equilibrium and symmetry assumptions are at all applicable to clusters. In any
case, it is precisely the discrepancy between X-ray and lensing mass estimates that
makes a detailed comparison between the two interesting. We can hope to obtain
information on the dynamical state of galaxy clusters and on their structure exactly
in such cases where X-ray and lensing observations do not yield compatible results.

In that respect, an interesting observation was reported by Miralda-Escudé
& Babul (1995). They studied three clusters of galaxies for which X-ray data
are available and which contain large arcs. They constructed mass models for the
clusters to reproduce the arcs, and compared the X-ray temperature expected from
these models to the X-ray temperature that was actually measured. In two of the
three clusters, they found that the observed X-ray temperature is substantially
lower than expected from the lensing effects. In other words, the X-ray gas in two
of the three clusters is “too cold” to explain the observed location of the arcs.

What do we learn from this discrepancy? Are these clusters well out of equi-
librium? Is there a non-thermal pressure component, for instance magnetic fields
(Loeb & Mao 1994), that allows the gas to stabilize at lower temperature? Is
the discrepancy a consequence of projection effects, i.e. are the clusters strongly
structured along the line-of-sight?

4.3 Lensing X-ray Clusters

In order to attack these and related questions, Bartelmann & Steinmetz (1996)
carried out gas-dynamical simulations of galaxy clusters in order to compare their
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lensing effects to their X-ray emission. The dark matter of the clusters was simu-
lated as described earlier, and the dynamics of the intracluster gas in the gravita-
tional potential of the total cluster matter was calculated with a Smooth Particle
Hydrodynamics (SPH) code. They derived cross sections for the formation of large
arcs and computed the X-ray emission by thermal bremsstrahlung. X-ray obser-
vations with the characteristics of current detectors were simulated, accounting for
the finite spatial and spectral resolution and the contamination of the observations
by background noise.

In agreement with observational findings, profiles with 3 ~ 2/3 excellently fit
the azimuthally averaged simulated X-ray flux profiles, while the X-ray temper-
ature and the velocity dispersion of the cluster particles imply 8 ~ 1 from eq.
(48). However, the best-fitting values of 3 increase when the background noise is
reduced. This suggests that the § discrepancy can very simply be resolved. Due
to background noise, X-ray flux profiles can only be determined over a limited
range of radii. Within that range, the profiles rarely reach their asymptotic slope,
rendering best-fitting § values systematically too low. This agrees with earlier
findings by Navarro et al. (1995). Since X-ray mass estimates are proportional to
B, a systematically low value of 8 ~ 2/3 implies an underestimate of the X-ray
mass by ~ 40%.

We have seen before that asymmetric clusters are more efficient in producing
arcs. Those clusters are out of equilibrium, and therefore the intracluster gas is
incompletely thermalized, resulting in a lower X-ray luminosity. As a consequence,
the largest part of the optical depth for the formation of large arcs is contributed
by clusters with intermediate rather than high X-ray luminosity. Clusters selected
for their high X-ray luminosity are therefore expected to be biased against their
ability to form large arcs.

The simulations by Bartelmann & Steinmetz (1986) show that on average, the
X-ray temperatures required to explain their lensing effects agree well with the
measured X-ray temperatures. The effect found by Miralda-Escudé & Babul (1995)
that some clusters are too cool for the large arcs they form is, however, reproduced
in such clusters which show structure along the line-of-sight. This indicates that
the temperature discrepancy originates from a projection effect. Being a two-body
process, the X-ray emission is sensitive to the square of the gas density, and hence
traces mainly the cluster cores. Lensing, on the other hand, depends only on the
projected mass density independent of how it may be distributed along the line-of-
sight. If a cluster consists of two clumps located along the line-of-sight, its lensing
effects are determined by the projection of the two clumps onto each other, while
the gas density in the two cluster cores is less than it would be if the two clumps
were merged together. The X-ray emission and its temperature is then less than
expected from lensing.

5 Summary and Future Prospects

The foregoing discussions and results provide the basis for a broad variety of in-
vestigations into aspects of cosmology, cluster formation, and cluster structure.
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1.

The cosmic density parameter 2y strongly influences the formation timescale
of galaxy clusters. The higher Q) is, the later clusters tend to form. Clusters
are most efficient lenses if they are located approximately half-way between
the sources and the observer. If they are too close to either the sources
or the observer, their lensing effects are suppressed by geometrical factors.
Assuming sources at redshift ~ 1, the most efficient lens redshift is ~ 0.3 —
0.4. The majority of clusters in a high-density universe forms at redshifts
lower than that. Hence, only very few clusters in a high-density universe are
expected to be efficient lenses. Moreover, numerical simulations show that
clusters are more compact when they form early. The background density
at formation time seems to determine their central density (Navarro et al.
1996). Loosely speaking, clusters retain some memory of the background
density when they formed. In a low-density universe, clusters form when the
background density is higher compared to a high-density universe, and hence
they reach higher central densities in a low- rather than in a high-density
universe. The higher compactness, and the earlier formation redshift, render
clusters in a low-density universe much more efficient lenses than in a high-
density universe.

Numerical N-body simulations performed with different methods consistently
show that clusters in CDM models normalized to the present cluster abun-
dance are only able to reproduce the observed frequent occurrence of arcs if
Qo is low (Huss, Bartelmann & Colberg, in preparation). I emphasize that
this result is not particularly sensitive to the power spectrum of the density
fluctuations. Whatever the shape of the spectrum is, matters have to be
arranged such that the correct abundance of clusters is reproduced at the
present epoch. It is not the shape of the spectrum that primarily decides
about the arc optical depth, but it is the formation timescale of the clusters,
which is mainly determined by the value of .

. This argument can be turned around to speculate about the normalization of

the power spectrum. Assuming any value for 2y, how do we need to choose
the normalization of the power spectrum, og, such that the clusters formed in
this model universe do reproduce the observed frequency of arcs? For high €,
this normalization would be higher than the normalization to cluster abun-
dance, and hence the cluster abundance predicted by such a normalization
would be higher than observed. This leads to the question whether it may be
possible that we somehow underestimate the number density of clusters. Are
there dark clusters, i.e. clusters which contain little luminous matter, and
therefore escape observation? It appears feasible to survey large portions of
the sky for the weak lensing effect of such “failed” clusters (Schneider 1996).
The upshot of items (1) and (2) is that either the universe has low density,
or there must be dark clusters in the sky.

. The accurate determinations of total cluster masses that weak lensing can

provide allow to set accurate limits for the gas fraction in clusters. This
topic is of considerable interest because roughly ten per cent of the total
cluster mass seems to be baryonic, and this is considerably higher than the
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theory of primordial nucleosynthesis predicts, provided (g is high. If we trust
the nucleosynthesis results, we are lead to the conclusion that either (2 is
low, or that the high baryon fraction in some clusters is balanced by clusters
which contain little or no baryons. This is in qualitative agreement with the
conclusion from items (1) and (2) above. It should however be tested first
whether cluster masses from weak lensing confirm the high baryon fraction
in clusters.

4. The gravitational lens effect and the X-ray emission are both sensitive to
weighted projections of the Newtonian potential of the clusters. While grav-
itational lensing weights the potential uniformly along the line-of-sight, the
X-ray emission emphasizes the high-density regions. Because the weightings
are different, it should be possible to derive information about the three-
dimensional structure of galaxy clusters by combining information from the
lens effect and from the X-ray emission (Bartelmann & Kolatt, in prepara-
tion).

5. The optical depth for the formation of large arcs sensitively reflects the for-
mation history of clusters. When clusters form early, they produce more arcs
because a larger fraction of them falls into the redshift range where lensing
is efficient, and the mean redshift of arc clusters is higher. In principle, it
should therefore be possible to find out about the formation history of clus-
ters through arc statistics, especially because the arc optical depth is very
sensitive to cluster structure.

These items appear as the main routes to follow. It is very difficult so far to
quantify any statements that relate to arc statistics. To do so, one would require
either a complete sample of observed galaxy clusters or a sample whose selection
effects are well known. Current samples of galaxy clusters containing arcs are far
from satisfying these conditions. It was thought for a while that selecting clusters
for their X-ray luminosity simultaneously selects for their mass in a way that is
independent of their ability to form arcs. This, however, does not seem to hold
true (Bartelmann & Steinmetz 1996). Since arcs favor substructured clusters, such
clusters which are in the process of formation are the most efficient arc clusters.
The gas in those clusters is not fully thermalized because there are bulk flows,
and their X-ray luminosity is lower than if the gas was completely thermalized.
Hence the largest portion of the arc optical depth is contributed by clusters with
intermediate rather than high X-ray luminosity, and selecting clusters for their
X-ray luminosity consequently cuts off a major fraction of the arc optical depth.
It requires larger samples of numerically simulated clusters to see whether this
effect is strong. So far, it indicates the possibility that selecting clusters for X-ray
emission may imply selecting against arcs.

Despite these difficulties, I believe that the combination of arc statistics, weak
lensing, and X-ray emission opens up a whole variety of ways to not only learn
about the mass, the structure, the formation history, and the gas content of galaxy
clusters, but also to constrain cosmological parameters, and to test our ideas about
how structure formed in the universe.
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